End-to-end Representation Learning for
Question Answering with Weak Supervision

Daniil Sorokin and Iryna Gurevych

Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universitat Darmstadt
www.ukp.tu-darmstadt.de

Abstract. In this paper we present a knowledge base question answering
system for participation in Task 4 of the QALD-7 shared task. Our system
is an end-to-end neural architecture for constructing a structural semantic
representation of a natural language question. We define semantic repre-
sentations as graphs that are generated step-wise and can be translated
into knowledge base queries to retrieve answers. We use a convolutional
neural network (CNN) model to learn vector encodings for the questions
and the semantic graphs and use it to select the best matching graph for
the input question. We show on two different datasets that our system is
able to successfully generalize to new data.

Keywords: Semantic web, Question-answering, Representation learning,
Convolutional neural networks, Semantic parsing, Weak supervision

1 Introduction

QALD is a series of international competitions on mapping natural language
questions to knowledge base queries [17]. The goal of the competitions is to
provide a benchmark for natural language based interfaces to knowledge bases.

In this paper!, we present a system that was developed for Task 4 of the
QALD-7 shared task, “English question answering over Wikidata”. The task
is formulated as follows: given a natural language question, translate it into a
structured query in SPARQL that can be executed against Wikidata to obtain
the answer to the question. The provided training data set for Task 4 consists of
100 natural language questions, the answers may be real word entities, numbers or
dates. Wikidata [19] is a popular collaboratively constructed knowledge base that
contains around 17 million entities and more than 70 million facts of common
knowledge.

In our system, we implement a semantic parsing approach to the problem of
knowledge base question answering (factoid QA). That is, we produce semantic
representations for natural language questions that are then deterministically
converted into SPARQL queries and executed against Wikidata.

! This is a pre-print version of the paper for self-archival purposes. The final publication
is available at Springer via http://dx.doi.org/10.1007/978-3-319-69146-6_7

2 Daniil Sorokin, Iryna Gurevych

Multiple successful question answering systems were presented in the previous
QALD competitions [17], as well as in conjunction with other QA datasets [3,
16, 13]. The key challenge in this respect is how to encode the semantics of the
question and to use it to find the correct answer. This can be done either by
directly encoding the question meaning into a latent vector encoding (end-to-
end systems) or by constructing an explicit structural semantic representation
(semantic parsing systems). The latent vector representation is normally used to
score individual answer candidates contained in the KB [8,7,11], whereas the
structural semantic representation is converted to a query to be executed against
the KB [3,22].

Semantic parsing systems, such as [2,3, 9], usually relied on trained models
with manually defined features and therefore, suffer from error propagation [15].
End-to-end systems that learn latent vector encodings for questions and answers
eliminate this problem [8,13]. However, latent vector encodings are hard to
analyze for errors or to modify with explicit constraints. Questions that require
aggregation over several knowledge base entities or temporal constraints are
almost impossible to model with the current end-to-end models (see, for example,
error analysis in [8]).

In our approach, we combine the best of the latent vector encodings and
explicit semantic representation methods. Our main contribution is an end-
to-end iterative generation of multi-relational semantic representations that
integrates a neural network to learn vector encodings for questions and semantic
representations. We use the similarity between the vector encodings to choose
the correct semantic representation for a given question.

The end-to-end neural architecture doesn’t need handcrafted features or
heavy pre-processing that are required in other approaches. It automatically
learns a correspondence between structural and lexical features of a semantic
representation and a natural language question. Thus, our approach can better
generalize to new unseen questions than approaches based on manually defined
features and can directly integrate explicit constraints.

We demonstrate the effectiveness of our system on two datasets: QALD-7
Task 4 and WebQuestions [3]. Both dataset contain questions that require complex
reasonsing to be answered.

2 Related work

The existing semantic parsing approaches to knowledge base question answering
usually consist of a mechanism that generates acceptable semantic representations
and of a model that relies on a combination of hand-crafted features to select the
correct representation [3,16,22]. As opposed to the end-to-end approaches, error
propagation is the main downside of the semantic parsing solutions. For example,
Reddy et al. [15] estimate that over 35% of errors are being propagated down the
pipeline. We try to overcome this in our approach by designing an end-to-end
architecture to process the semantic graphs. Dong et al. [8] and Jain [11] achieve
the best results on factoid QA with an end-to-end approach and innovative usage

End-to-end Representation Learning for Question Answering 3

Beatles
ﬂ PERFORMER

[PUBLICATION_DATE | [INSTANCE_OF |

Fig. 1: Graphical semantic representation for a question
“What albums did the Beatles release in 19657”

of neural networks to search through the KB. However, their approaches don’t use
explicit semantic representations and thus fail on cases when explicit constraints
are required.

Encoding the semantics of a questions using semantic graphs is a common
way to conceptualize semantic representations [3,15,22]. Our graphs are most
similar to those of [15] and [22]. We closely follow the approach of [22] who, in
contrast to [15], don’t rely on syntactic parsing to construct semantic graphs. At
the same time, our approach is more flexible than [22] because we don’t separate
out a single main relation and we are able to process all relations in the same way.
This is mainly possible because we are using Wikidata that uniformly encodes
all information with binary relations.

A different approach was taken in one of the winning systems of QALD-6 [9].
The authors have used a controlled language to enforce restrictions on syntax
and lexical content of a question. This has allowed to unambiguously map the
question to a semantic representation and retrieve answers with high precision.
The system has demonstarted a very high performance on questions form a
closed domain, but wouldn’t be able to answer if a question is not covered by
the controlled language.

A set of QA system exists that exclusively focus on questions that can be
answered using a single triple from the KB [5, 13]. These systems don’t incorporate
constraints or multi-relational representations and usually model the task as a
classification problem. Given a question, one has to predict a relation type from
a pre-defined scheme. We don’t compare to these approaches, since our focus is
on complex questions.

3 Semantic graphs

We use a graphical representation to encode the semantics of a questions (semantic
graph). Our semantic representations (see Figure 1) consist of a question variable
node (@), real world entities (Beatles]), constraints ((argmin)) and relation types
from the KB ([PERFORMER]). The question variable denotes the answer to the
question. That is, all entities from the KB that can take its place so that all
relations and constraints hold, constitute the answer to the question.

To retrieve the answers given a semantic graph, we convert it to a SPARQL
query. All relations in the semantic graph are directed and the conversion is
straightforward. We add an ORDER BY clause if there is a temporal constraint in

4 Daniil Sorokin, Iryna Gurevych

the graph. The query is executed against a Wikidata RDF dump that is stored
locally in Virtuoso?. To speed up the query, we blacklist certain relations and
entities that are used to encode meta-information in Wikidata.

All relation are attached to the question variable node and we don’t allow
anything but a Wikidata entity in the position of the question variable. This
poses limitations on the types of questions that our system can answers (e.g.,
aggregate questions or true/false question won’t be processed), but it also limits
the space of possible graphs and makes the search for the best matching graph
more tractable.

Our semantic graphs are coupled to the knowledge base and therefore, only
relations and entities defined by the knowledge base scheme are possible. In the
following sections, we describe the way we construct semantics graphs for a given
question and how we select the graph that matches the semantics of the question
the best.

4 System architecture

4.1 Entity linking

Our system takes a natural language question in the form of a string as input. We
tokenize it and add part-of-speech tags with the Stanford CoreNLP toolkit [14].
Afterwards, we extract token fragments using a set of regular expression rules
that match all sequences of nouns with adjacent modifiers. For each extracted
fragment, we generate a set of possible token n-grams and look them up in
Wikidata. That gives a list of Wikidata entities that might correspond to the
given fragment.

Since Wikidata doesn’t offer an entity linking API, we have used alterna-
tive labels of the Wikidata entities to perform the look-up. Alternative labels
are entered manually for each Wikidata entity and represent different spelling
and name variations. For example, the entity album:Q482994 has the following
alternative labels: [audio album, music album, record album].

Following the approach in [1], we sort the retrieved list of entities by the
combination of the Levenshtein distance between the fragment and the item label
and the integer part of the item ID:

rank =a levenshtein(fragment, entity_main _label)

+blog entity_serial_id (1)
1 tity_label
temax(l — en(entity_label)

,0)

len(fragment)

Since in some cases only a part of a fragment will match an entity, we also
add a term to prefer longer fragment matches. The coefficients a, b and ¢ were

2 https://virtuoso.openlinksw.com

End-to-end Representation Learning for Question Answering 5

GDD,TEMPOKAL,CONSTKAIN}

l / Take

e»@ake MDD,RELATIOD

ADD_NUMBER_CONSTRAINT

Fig. 2: Scheme of steps that can be undertaken to construct a graph.

heuristically set to 1, 1 and 2 respectively. We select the candidate with the
smallest rank for each fragment as the final linking.

For example, in the question “What was the first album released by the Beat-
les?”, we first extract fragments “the first album” and “the Beatles” and then link
them to entities The Beatles (band):Q1299 and album (musical record):Q482994.

4.2 Iterative representation generation

Once the list of entities is extracted from the question, we use it to construct
possible semantic graphs. We develop a representation generation procedure that
defines what kind of graphs can be constructed.

We iteratively generate candidate semantic graphs of the question using a set
of actions which can be applied at each step, starting with an empty graph that
contains only a question variable. We define three types of actions for graph genera-
tion: ADD_RELATION, ADD_TEMPORAL_CONSTRAINT, ADD_NUMBER_CONSTRAINT.
The actions define how we search for possible semantic representations. Each
action creates a new modified copy of the graph and adds to the list of candidates.
Our procedure is inspired by the process of adding constraints to the question in
[2], yet our approach is more flexible because we don’t divide the representation
into the main relation and constraints. Figure 2 shows the application order of
the actions.

For each action, we define conditions that must be satisfied in order for the
action to be applied at the current step. We list the conditions for each action in
Table 1. The conditions control the flow of the graph generation procedure. For
example, at the first iteration in Figure 3 we apply the ADD_RELATION action,
since it is the only action that can be performed on a empty graph. The result is
one graph for each relation that exists for the entity (Figure 3 shows
only three). It is followed by another application of ADD_RELATION since there
is a second entity in the question and finally, ADD_TEMP_CONSTRAINT can be
applied at the third iteration step because of a temporal marker “first” in the

6 Daniil Sorokin, Iryna Gurevych

Action Conditions Action description

ADD_RELATION LEN(E) > 0 Queries Wikidata for relations R that
exist for e,e € F, and creates a new
representation for each r,r € R

ADD_TEMPORAL LEN(RELATIONS(s)) > 0 A Creates a new representation with

_CONSTRAINT LEN(temp_markers N Q) > 0 a constraint that the answer is the
last or the first entity in a temporally
sorted list

ADD_NUMBER LEN(RELATIONS(s)) > 0 A Creates a new representation with an
_CONSTRAINT CONTAINS(Q, number) added relation that has a numeric ar-
gument (e.g. year)

Table 1: The list of actions defined for the iterative representation generation process
(E-list of entities, @-list of question tokens, s—current semantic representation)

question. We check that each candidate semantic graph is valid and those that
don’t produce answers are not further expanded. For example, in Figure 3 we
don’t expand the candidate in the middle after the first iteration, since it is
impossible to add a relation with that would result in a valid semantic
graph.

4.3 Neural vector encodings

We construct a neural network model to select the best matching semantic graph
for the question. It encodes the question and the candidate semantic graphs into
fixed-size vectors and then uses the cosine measure to find the correct graph. The
semantic graph that has the closest vector to the question vector is taken to be
the best semantic representation of the question.

The end-to-end architecture jointly learns vector encodings for questions
and semantic graphs. We use the same CNN-based model to encode both the
question and the individual relations of the semantic graph. The encodings of the
individual relations are later composed into a single vector for the whole graph.

Tter. 2
e INFLUENCED | Beatles | ==u1: > ((/D)<{INFLUENCED
INSTANCE_OF
Iter, 1 e HAS_PART ARGMIN
PUBLICATION _DATE
Iter. 2 PERFORMER Tter. PERFORMER
Qo {Beote | > @ mmveor] =+ C
ISTANCEOF

Fig. 3: Generating candidate representations for “What was the first Beatles album?”

End-to-end Representation Learning for Question Answering 7

Question encoding s, € B [O0000

\1><‘, T
: X

/

Max pooling ¢ € R500 OOOOOO
S X >
Convolutional layer ¢}
0 @ O)

O o)
O O O O @
Trigram hash encoding h € R O O O O O

O O O O O

Question tokens x

<<S> What was the first (e) album? (E>>

Fig. 4: The architecture of the CNN-based question encoder

We choose CNNs as a basis for our neural network model, since they have proven
to be successful for question answering [2, 8].

The architecture of the model is represented in Figure 4, where it is used
to encode an example question into a fixed-size vector. The input question is
first tokenized and the tokens corresponding to named entities are replaced with
a special (e) token. We also mark the beginning and the ending of the input
with (S) and (E) respectively. The resulting list of tokens x = {z1,22...2,}
constitutes the input to the model (see at the bottom of Figure 4).

Next, we represent each token as a list of its character trigrams using the
hashing technique suggested in [10]. For example, the word “what” has the
following trigrams: t = {#wh,wha, hat,at#}, where # stands for the word
boundary. The word is represented as a binary vector h € RIVI, where V is the
number of possible trigrams in the training data. For the word “what”, we mark
the positions that correspond to the trigrams in t with 1 and the rest is 0. Such
scheme ensures that different morphological forms of the same word or misspelled
words have a similar representation. In the preliminary experiments, we have
also observed that this scheme performs more consistent and better than using
word or character embeddings.

The list of token representations is further processed by the CNN layer C.
For each token, it convolves its representation with the representation of the
neighboring tokens. We apply the max pooling operation after the CNN layer
to capture the most salient features of the input string. The output of the max
pooling operation c is further transformed with a fully connected layer S and a
tanh non-linearity. We take the resulting vector s, as the latent encoding of the
question.

To encode a semantic graph, we first break it into individual relations. For
each relation, we construct a string label by taking the Wikidata relation type

8 Daniil Sorokin, Iryna Gurevych

Graph encoding s, [OOO0O)
max

Edge encodings

Max Pooling

Conv. Layer

Hash Layer

Property la-
bel tokens

CTETOR

(e) performer instance of album (a) publication date

Beatles PERFORMER INSTANCE_OF album ’—A{ PUBLICATION_DATE }'—“

Fig. 5: Graph encoder architecture, here used to encode the example graph in Figure 1.

label and adding the (e) token either at the beginning or the end depending on
the direction of the relation. For temporal constraints, we always use the label
“point in time” and a (a) token instead.

We tokenize the relation labels and use them as an input to the same CNN-
based model that was used to encode the question (see Figure 5). The output
is a semantic vector for each individual relation in the graph: {s,,,sr, ...s;}.
The weights of the neural network model are shared in both cases and the vector
encodings for questions and semantic graphs are learned jointly. To get a single
vector for the whole graph s, we apply another max pooling operation on the set
of the relation vectors. The order of relations in the graph is not important and
the max pooling disregards the order of input elements. The final vector encoding
for a candidate graph encodes the most prominent features of the relations that
it contains.

5 Question answering as graph generation

In this section, we describe how the system proceeds to answer a given question.
First, the input question is encoded into a vector with the question encoder
(Figure 4) and the question vector encoding is stored for further reference. Second,
we extract entities from the question to start the graph construction. We take
the steps described in Section 4.2 to construct possible semantic graphs for the
input question. Each constructed variant is encoded by processing individual
semantic relations in the graph and combining them into a single graph encoding
(Figure 5).

End-to-end Representation Learning for Question Answering 9

Finally, we score each semantic graph using the cosine distance between the
vector encoding of the question and the vector encoding of the graph. During
evaluation we perform a beam search and score the constructed graphs at each
step, selecting the top 10 graphs for further processing. The semantic graph with
the highest score is selected as the final choice for the given question and is used
to retrieve the answers from the KB.

6 Model training

To train the model we need positive pairs of questions and semantic graphs. We
use weak supervision in the form of question-answer pairs as suggested in [3]
to train the neural network model. Weak supervision can provide more training
data than available in the form of manually annotated semantic representations.
We take the training subset of the WebQuestions dataset [3] which contains
3778 questions and manually retrieved answers. To get pairs of questions and
semantic graphs for model training, we run our graph generation procedure on
each question. We evaluate each possible semantic graph against Wikidata and
compare the extracted answers to the manually provided answers in the dataset.
The semantic graphs that result in F1 higher than a certain threshold are stored
as positive training instances and the rest of the graphs generated during the
same process are used as negative instances. We set the threshold to 0.2 to
capture as much of the positive semantic graphs as possible. To increase the
search space, we additionally allow second-order relations at this step.

Since WebQuestion was originally developed for the Freebase knowledge base,
not all of the questions in the dataset can be answered with Wikidata. With
our method, we generate positive semantic graphs for 2334 question from the
training part of WebQuestions and reserve 702 of them for validation.

At each training epoch we take all positive semantic graphs and sample
up to 20 negative graphs per question. We use the respective F1l-scores of the
positive semantic graphs to define the training objective. We apply the softmax
transformation on the list of F1-scores of the positive graphs and the sampled
negative graphs and use the Kullback-Leibler divergence as the loss function.
This proves to be effective, since many questions have multiple positive graphs,
none of which achieve a perfect Fl-score.

The loss is computed for each training instance (a question and a set of
semantic graphs) and is averaged over a batch of size 128. The Adam optimizer [12]
is used to perform the updates on the weights of the network. We determine the
rest of hyper-parameters with the random search on the validation set. We set
the filter length of the CNN to 3 and the step size is set to 1. The size of the
CNN layer output is 500 and the dimension of the question and graph vector
encodings is 300.

10 Daniil Sorokin, Iryna Gurevych

Processed Right Partially Precision Recall F1 G.F1

WDAqua (full) [6] 100 0.320 0.323 0.322 0.322
WDAqua (keywords)[6] 100 0.280 0.280 0.280 0.280
Our system 80 25 36 0.351 0.432 0.364 0.291

Our system (ideal model) 80 47 30 0.760 0.898 0.727 0.581

Table 2: Evaluation results on the QALD-7 Task 4 training (100 questions)

7 Experiments

In Table 2, we report preliminary evaluation results on the training dataset for
Task 4 of the QALD-7 Shared Task using the metrics from [17]. Our model
was not trained on this dataset and, therefore, the reported results represent an
expected generalization error of our system.

As mentioned in Section 3, the system currently doesn’t cover the questions
that require a number or a year as an answer. Therefore, only 80 out of 100 Task
4 dataset questions could be processed by our system.

For comparison, we list results for a competitor system, WDAqua [6], on the
same dataset (see the paper for the description of the system). These are the
only other results that were published on the QALD-7 Task 4 dataset so far. As
opposed to our system, WDAqua can produce numbers and boolean values as
answers, but it only allows for a maximum of two relations in a question and
doesn’t support superlative constructions. Our system proofs to be more flexible
and outperforms WDAqua on precision, recall and F1 metrics.

Additionally, we include a version of our system with an oracle neural network
model, that always chooses the correct semantic graph. This demonstrates the
limitation of our semantic graphs, as the oracle system only achieves an F1 of
0.727. Right now, the semantic graphs don’t cover questions that require complex
semantic representations and comparison functions. Therefore, questions such
as “Show me all basketball players that are higher than 2 meters.” could be only
partially answered.

To directly compare our system to related work, we also perform an evaluation
on the test subset of the WebQuestions dataset. It contains simple questions that
can be answered with a single relation as well as complex questions that require
multiple relations and constraints. WebQuestion has been a common benchmark
for semantic parsers and information retrieval systems for many years.

A system’s performance on WebQuestions is measured using precision, recall
and F'1-score. That ensures a fair evaluation, since a system might provide a
partially correct answer that is nevertheless better than a complete miss.

Table 3 summarizes our results on the test part of WebQuestions. We evaluate
on a subset of the test set that is substantially covered by Wikidata. We define
this subset by searching through the space of possible semantic graphs of arbitrary
depth to find questions that can be answered with Wikidata. Practically, this

End-to-end Representation Learning for Question Answering 11

Prec. Rec. F1

Yao and Van Durme (2015) [21] 0.372 0.596 0.422
Berant et al. (2013) [3] 0.521 0.591 0.534

Berant and Liang (2014) [4] 0.550 0.601 0.561
Yao (2015) [20] 0.565 0.761 0.603

Our system 0.604 0.638 0.610

Reddy et al. (2016) [16] 0.663 0.750 0.679

Yih et al. (2015) [22] 0.670 0.815 0.698
Jain (2016) [11] 0.693 0.853 0.725

no pre-training

systems with pre-training

Table 3: Evaluation results on the WEBQUESTION dataset

amounts to evaluating if a property path exists between entities in the question
and the answers. We retain the questions that have a Wikidata answer with an
F1-score higher than 0.8, which results in a subset of 460 questions for evaluation.
We compute the results on this subset for other systems that were previously
evaluated on the WebQuestions dataset using the systems’ output posted by the
authors.

As can be seen, our system compares favorably to the rest of the published
results outperforming 4 out of 7 systems. 2 out of 3 systems that score better than
our approach, [22] and [11], use unsupervised and semi-supervised pre-training
on large web corpora such as ClueWeb. Yih et al. [22] additionally employ an
entity linking system that is not openly available. They note that their system’s
performance drops by more than 8% when using alternatives. Reddy et al. [16]
don’t use unsupervised pre-training, but rely on a deprecated Freebase API
for entity linking and make a heavy use of syntactic pre-processing that is not
required for our approach. It is important to note that our system currently
doesn’t use any additional training data or unsupervised pre-training, but the
same techniques can be used to improve our approach as well. We leave this
directon for future work.

8 Model analysis

Our architecture is able to learn fixed-size vectors for question and semantic
graphs. In this section, we briefly analyze the vector encodings for questions that
were learned by our model. We take the multi-dimensional encodings and map
them into 2-D space using T-SNE [18] to be able to inspect them visually. We use
our training dataset for the analysis, since it contains many question of similar
semantics.

Figure 6 shows some of the clusters that can be identified among the question
encodings. There we can see in detail that formed clusters correspond to questions
with similar meaning. The left cluster consists of questions that ask about various

12 Daniil Sorokin, Iryna Gurevych

tv\ ho played nba last night ?

%\% %}%%&%?%l(grmna s‘m@@ﬁﬁdﬂ 18 ewhat languae did ancient romans write in ?
Rﬁ'%’ :?& o s bR, f!clecailutodm ?

sl ewho plays lois lane in superman nturn‘f at ot micity are people from iran 7 1
ewho played giles on buffy the vampire Q} Ser
‘W hat & The primary language of israel ?
° ° ® eavhat is the main language spoken in switzerland ?
°
-85 ° rat do people in south africa speak ? 7
Sydnahgsbenwisn ofduisgrifin ? o $V0zt do peor v
3 ﬁmmmp(lm\lﬁyglgho“ 1";Vh lt language is spoken in singapore
ol vsl at language does people in thalland speak ?
ewho plays young lex luthor in smallgille ? ¢ .Wl fodagiage ol dbeyoinamkain Aoy @gkh?am@n(a ?
W%(‘1"&?&? %Y(’)%l‘f}i)lﬁ’fﬂ 2Bc 1bI§r speak ?
°
95| - % 4
o °

ewhat languages do scottish people speak ?

—10k i
. | | | |

-10.5 =10 -9.5 -9 —8.5 -8 =75 =7 —6.5 —6 —5.5 -5 —4.5 —4 —3.5 -3 -2.5 -2 —1.5

Fig. 6: Two clusters of question encodings learned by the model, every 5 question is
labeled. Clusters corresponding to questions about an official language of a country
and an actor’s role are visible.

character roles in movies. The right cluster groups questions that are concerned
with languages spoken in a particular country.

It can been seen that the model learns to group questions with similar
meanings but no obvious lexical overlap. For example, questions “What is the
primary language of Israel?” and “What do people speak in South Africa speak?”
both appear in the center of the right cluster on Figure 6. Some errors are also
evident from the diagram: for example, the question “Who played NBA last
night?” is incorrectly placed near the character-role-cluster because of the second
meaning of the word “play”.

9 Conclusions

In this paper, we have presented an end-to-end system that produces semantic
representations for natural language questions and evaluates them on Wikidata.
We have demonstrated the soundness of our approach by comparison with other
systems on two different QA datasets. Our system produces Wikidata items
as answers and can successfully process more than 50% of the questions in the
QALD-7 Task 4 dataset. On a popural WebQuestion dataset, our system shows
the strongest results among the systems that don’t rely on semi-supervised or
unsupervised pre-training.

There are several obvious directions for future work that we hope to pursue.
First, the unsupervised pre-training seems to be a logical way to improve the
performance of our system. Second, as observed in [22], entity linking can have
a big impact on the overall performance. Our approach to entity liking utilizes
high-quality alternative labels, but suffers from coverage issues if relevant labels
are not yet in Wikidata. Third, we plan to further develop our semantic graphs
to cover other domains of question answering, such as non-factoid QA.

End-to-end Representation Learning for Question Answering 13

10 Acknowledgments

We thank the anonymous reviewers for their valuable comments and insights
that helped us to improve upon the initial version of the paper.

This work has been supported by the German Research Foundation as part of

the QA-Edulnf project (grant GU 798/18-1 and grant RI 803/12-1). We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Tesla
K40 GPU used for this research.

References

1.

10.

11.

Ahmad Aghaebrahimian and Filip Juré¢icek. Open-domain Factoid Question Answer-
ing via Knowledge Graph Search. In Proceedings of 2016 NAACL Human-Computer
Question Answering Workshop, pages 2228, 2016.

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-Based
Question Answering with Knowledge Graph. In Proceedings of the 26th International
Conference on Computational Linguistics (COLING), pages 2503-2514, 2016.
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing
on Freebase from Question-Answer Pairs. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1533-1544,
2013.

Jonathan Berant and Percy Liang. Semantic Parsing via Paraphrasing. In Pro-
ceedings of 52nd Annual Meeting of the Association for Computational Linguistics,
pages 1415-1425, 2014.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale
Simple Question Answering with Memory Networks. arXiv preprint, 2015.
Dennis Diefenbach, Kamal Singh, and Pierre Maret. WDAqua-core0: A Question
Answering Component for the Research Community. In Proceedings of the 7th
Open Challenge on Question Answering over Linked Data (QALD-7) at ESWC,
2017.

Li Dong and Mirella Lapata. Language to Logical Form with Neural Attention.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, pages 33—43, 2016.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question Answering over Freebase with
Multi-Column Convolutional Neural Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, pages 260-269, 2015.

Sherzod Hakimov, Christina Unger, Sebastian Walter, and Philipp Cimiano. Ap-
plying Semantic Parsing to Question Answering over Linked Data: Addressing the
Lexical Gap. In Natural Language Processing and Information Systems: 20th Inter-
national Conference on Applications of Natural Language to Information Systems
(NLDB), pages 103-109, 2015.

Po-sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
Learning Deep Structured Semantic Models for Web Search using Clickthrough
Data. In The 22nd ACM international conference on information € knowledge
management (CIKM), pages 2333-2338, 2013.

Sarthak Jain. Question Answering over Knowledge Base using Factual Memory
Networks. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 109-115, 2016.

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Daniil Sorokin, Iryna Gurevych

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint, 2014.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Séren Auer. Neural Network-
based Question Answering over Knowledge Graphs on Word and Character Level.
In Proceedings of the 26th International Conference on World Wide Web - WWW
’17, pages 1211-1220, 2017.

Christopher D. Manning, John Bauer, Jenny Finkel, Steven J. Bethard, Mihai
Surdeanu, and David McClosky. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics, pages 55—60, 2014.

Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale Semantic Parsing
without Question-Answer Pairs. Transactions of the Association for Computational
Linguistics, 2:377-392, 2014.

Siva Reddy, Oscar Téackstrom, Michael Collins, Tom Kwiatkowski, Dipanjan Das,
Mark Steedman, and Mirella Lapata. Transforming Dependency Structures to Logi-
cal Forms for Semantic Parsing. Transactions of the Association for Computational
Linguistics, 4:127—-140, 2016.

Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo,
Elena Cabrio, Philipp Cimiano, and Sebastian Walter. Question answering over
linked data (QALD-5). In CEUR Workshop Proceedings, volume 1391, 2015.
Laurens Van Der Maaten and Geoffrey Hinton. Visualizing high-dimensional data
using t-sne. Journal of Machine Learning Research, 9:2579-2605, 2008.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: A Free Collaborative Knowl-
edgebase. Communications of the ACM, 57(10):78-85, 2014.

Xuchen Yao. Lean Question Answering over Freebase from Scratch. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics, pages 66—70, 2015.

Xuchen Yao and Benjamin Van Durme. Information Extraction over Structured
Data: Question Answering with Freebase. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, pages 956966, 2014.
Wen Tau Yih, Ming-wei Chang, Xiaodong He, and Jianfeng Gao. Semantic Parsing
via Staged Query Graph Generation: Question Answering with Knowledge Base. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing,
pages 1321-1331, 2015.

