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Abstract

In this work we provide a systematic empiri-
cal comparison of pretrained multilingual lan-
guage models versus their monolingual coun-
terparts with regard to their monolingual task
performance. We study a set of nine typolog-
ically diverse languages with readily available
pretrained monolingual models on a set of five
diverse monolingual downstream tasks. We
first establish if a gap between the multilin-
gual and the corresponding monolingual rep-
resentation of that language exists, and sub-
sequently investigate the reason for a perfor-
mance difference. To disentangle the impact-
ing variables, we train new monolingual mod-
els on the same data, but with different tokeniz-
ers, both the monolingual and the multilingual
version. We find that while the pretraining
data size is an important factor, the designated
tokenizer of the monolingual model plays an
equally important role in the downstream per-
formance. Our results show that languages
which are adequately represented in the multi-
lingual model’s vocabulary exhibit negligible
performance decreases over their monolingual
counterparts. We further find that replacing the
original multilingual tokenizer with the spe-
cialized monolingual tokenizer improves the
downstream performance of the multilingual
model for almost every task and language.

1 Introduction

Following large Transformer-based language mod-
els (LMs) (Vaswani et al., 2017) pretrained for the
English language (e.g., BERT, RoBERTa, T5) (De-
vlin et al., 2019; Liu et al., 2019; Raffel et al., 2020)
on large corpora, similar monolingual language
models have been introduced for other languages
(Virtanen et al., 2019; Antoun et al., 2020; Mar-
tin et al., 2020, inter alia), offering previously un-
matched performance on virtually all NLP tasks.

∗Both authors contributed equally to this work.

Concurrently, massively multilingual pretrained
models with the same architectures and training
procedures, but covering more than 100 languages
in a single model, have been proposed (e.g., mul-
tilingual BERT (mBERT), XLM-R, multilingual
T5) (Devlin et al., 2019; Conneau et al., 2020; Xue
et al., 2020).

The “industry” of pretraining and releasing new
monolingual BERT models continues its operations
despite the fact that the corresponding languages
are already covered by multilingual models such
as mBERT and XLM-R. The common argument
justifying the need for monolingual variants is the
assumption that multilingual models, due to suf-
fering from the so-called curse of multilinguality
(Conneau et al., 2020) (i.e., the lack of capacity
to represent all languages in an equitable way),
underperform monolingual models when applied
to monolingual tasks (Virtanen et al., 2019; An-
toun et al., 2020; Rönnqvist et al., 2019, inter alia).
However, little to no compelling empirical evidence
with rigorous experiments and fair comparisons
have been presented so far to support or invalidate
this strong claim. In this regard, much of the work
proposing and releasing new monolingual mod-
els is grounded on anecdotal evidence, pointing to
the positive results reported for other monolingual
BERT models (de Vries et al., 2019; Virtanen et al.,
2019; Antoun et al., 2020).

Monolingual BERT models are typically eval-
uated on downstream NLP tasks in their partic-
ular languages to demonstrate their effectiveness
in comparison to previous monolingual models or
mBERT (Virtanen et al., 2019; Antoun et al., 2020;
Martin et al., 2020, inter alia). While these results
do show that certain monolingual models can out-
perform mBERT in certain tasks, we hypothesize
that this may substantially vary across different lan-
guages and language properties, tasks, pretrained
models and their pretraining data, domain, and
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size. We further argue that conclusive evidence,
either supporting or refuting the key hypothesis
that monolingual models currently outperform mul-
tilingual models, necessitates an independent and
controlled empirical comparison on a diverse set of
languages and tasks.

While recent work has argued that mBERT is
under-trained (Rönnqvist et al., 2019; Wu and
Dredze, 2020), providing evidence of improved
performance when training a monolingual model
on more data, it is unclear if this is the only im-
portant factor that improves the performance of
monolingual models. For instance, another con-
tributing factor might be the limited vocabulary
size of a multilingual model compared to the sum
of tokens of all corresponding monolingual mod-
els. This provokes analyses on whether dedicated
(i.e., language-specific) tokenizers of monolingual
models also play a critical role.

Contributions. In summary, our contributions are
as follows. 1) We systematically compare monolin-
gual versus multilingual pretrained language mod-
els for 9 typologically diverse languages on 5 struc-
turally different tasks. 2) We train new monolin-
gual models on equally sized datasets but rely-
ing on different tokenizers (i.e., shared multilin-
gual tokenizers versus dedicated language-specific
ones) to disentangle the impact of pretraining data
size versus tokenization on the downstream per-
formance. 3) We isolate factors that contribute to
performance difference (e.g., tokenizers’ “fertility”,
the number of unseen (sub)words, data size) and
provide an in-depth analysis of the impact of these
important factors on task performance. Finally, we
hope that our findings offer informed guidance for
training new multilingual models in the future.

2 Background and Related Work

Multilingual LMs. The wide usage of pretrained
multilingual Transformer-based LMs has been in-
stigated by the release of multilingual BERT (De-
vlin et al., 2019) which followed on the success of
the monolingual English BERT model. mBERT
adopted the same pretraining regime as monolin-
gual BERT on concatenated Wikipedia data for 104
languages with the largest Wikipedias. Exponential
smoothing was used when creating the subword vo-
cabulary based on WordPieces (Wu et al., 2016)
and a pretraining corpus. By oversampling under-
represented languages and undersampling overrep-
resented languages, the goal is to counteract the im-

balance of pretraining data sizes. The final shared
mBERT vocabulary comprises a total of 119,547
subword tokens.

Other multilingual model variants followed
mBERT, such as XLM-R (Conneau et al., 2020)
based on the monolingual RoBERTa model (which
is also a variant of the original BERT model) (Liu
et al., 2019). Concurrently, many studies started
analyzing mBERT’s and XLM-R’s capabilities and
limitations, finding that the multilingual models
work surprisingly well for cross-lingual tasks, de-
spite the fact that they do not rely on any direct
cross-lingual supervision (e.g., parallel or compara-
ble data, translation dictionaries) (Pires et al., 2019;
Wu and Dredze, 2019; K et al., 2020).

However, recent work has also pointed to some
fundamental limitations of the multilingual mod-
els. Conneau et al. (2020) observe that, for a fixed
model capacity, adding new languages increases
cross-lingual performance up to a certain point. Af-
ter that point is reached, adding new languages de-
teriorates performance. This phenomenon, termed
the curse of multilinguality, can be attenuated by
increasing the capacity of the model (Artetxe et al.,
2020; Pfeiffer et al., 2020c; Chau et al., 2020) or
through additional training for particular language
pairs (Pfeiffer et al., 2020c; Ponti et al., 2020). An-
other observation concerns substantially reduced
cross-lingual and monolingual abilities of the mod-
els for resource-poor languages with smaller pre-
training data (Wu and Dredze, 2020; Lauscher et al.,
2020b). Those languages are effectively still un-
derrepresented in the subword vocabulary and the
model’s shared representation space despite over-
sampling. In general, these findings indicate that
it is (currently) not possible to represent (all) lan-
guages of the world in a single model.

Monolingual versus Multilingual LMs. New
monolingual language-specific models also
emerged for many languages, following BERT’s
architecture and pretraining procedure. For
instance, there are monolingual BERT variants
for Arabic (Antoun et al., 2020), French (Martin
et al., 2020), Finnish (Virtanen et al., 2019), Dutch
(de Vries et al., 2019), Italian (Polignano et al.,
2019), to name only a few. Pyysalo et al. (2020)
released 44 monolingual WikiBERT models
trained on Wikipedia. However, only a few
studies have thus far, either explicitly or implicitly,
attempted to understand how monolingual and
multilingual BERTs compare across different



languages. Here, we briefly summarize previous
attempts to understand these differences.

Nozza et al. (2020) extracted task results from
the respective papers on monolingual BERTs, and
listed them on a dedicated webpage1 to facilitate
an overview of monolingual models, and their com-
parison to mBERT. However, they simply copy the
scores reported in the papers which were obtained
under diverse experimental setups and training con-
ditions: they have not verified the scores nor have
performed a controlled impartial comparison.

Vulić et al. (2020) probed mBERT and mono-
lingual BERT models across six typologically di-
verse languages (German, English, Chinese, Rus-
sian, Finnish, Turkish) for lexical semantics. Their
results show that pretrained monolingual BERT
models encode significantly more lexical informa-
tion than mBERT for a particular language, again
hinting that mBERT cannot learn lexical informa-
tion adequately for all of its 104 languages due to
its limited model capacity.

Zhang et al. (2020) investigated the role of pre-
training data size with RoBERTa; they found that
the model already learns most syntactic and seman-
tic features from pretraining on the corpora span-
ning 10M–100M word tokens, but still requires
massive datasets to encode higher-level semantic
and commonsense knowledge.

The work closest to ours is that of Rönnqvist
et al. (2019). They compared mBERT to mono-
lingual BERT models for six languages (German,
English, Swedish, Danish, Norwegian, Finnish) on
three different tasks. They find that mBERT lags
behind its monolingual counterparts in terms of
performance on cloze and generation tasks. They
also identified clear differences among the six lan-
guages in terms of this performance gap. For exam-
ple, the gap is smaller for German than for Finnish.
Accordingly, they speculate that mBERT is under-
trained with respect to individual languages. One
shortcoming of their evaluation is that their set of
tasks is limited, and their language sample is very
narrow typologically; it remains unclear whether
these findings extend to different language families
and to structurally different tasks.

Despite recent efforts, a careful, systematic study
within a controlled experimental setup, a diverse
language sample and set of tasks is still lacking.
We aim to address this gap in this work.

1https://bertlang.unibocconi.it/

3 Controlled Experimental Setup

We compare multilingual BERT with its monolin-
gual counterparts in a spectrum of typologically
diverse languages and across a variety of down-
stream tasks. By isolating and analyzing crucial
factors contributing to downstream performance,
such as used tokenizers and pretraining data, we
can conduct unbiased and fair comparisons.

3.1 Language and Task Selection

The selection of languages has been guided by sev-
eral (sometimes competing) criteria: C1) typologi-
cal diversity; C2) availability of pretrained mono-
lingual BERT models; C3) representation of the
languages in standard evaluation benchmarks for a
sufficient number of tasks.

Regarding C1, most high-resource languages be-
long to the same language families, thus sharing
a majority of their linguistic features. Neglecting
typological diversity inevitably leads to poor gener-
alizability and the induction of biases (Gerz et al.,
2018; Joshi et al., 2020; Ponti et al., 2019). Follow-
ing recent work in multilingual NLP which pays
particular attention to typological diversity (Clark
et al., 2020; Hu et al., 2020; Ponti et al., 2020, in-
ter alia), we experiment with a language sample
covering a broad spectrum of language properties.

Regarding C2, for computational tractability, we
only select languages with readily available BERT
models. Unlike prior work, which typically lacks
either language (Rönnqvist et al., 2019; Zhang
et al., 2020) or task diversity (Wu and Dredze,
2020; Vulić et al., 2020), we ensure that our ex-
perimental framework takes both into account, thus
also satisfying C3. Task diversity and generaliz-
ability is achieved in two ways. First, we select
a combination of tasks driven by lower-level syn-
tactic and higher-level semantic features (Lauscher
et al., 2020b). Second, we also experiment with
different task fine-tuning regimes, see later in §3.

Finally, we select a set of nine languages from
eight different language families, as listed in Ta-
ble 1.2 3 We evaluate mBERT and monolin-

2Note that, since we evaluate monolingual performance
and not cross-lingual transfer performance, we require train-
ing data in the target language. Therefore, we are unable to
leverage many of the available multilingual evaluation data
such as XQuAD (Artetxe et al., 2020), MLQA (Lewis et al.,
2020), or XNLI (Conneau et al., 2018). These evaluation sets
do not provide any training portions for languages other than
English.

3Additional details regarding our selection of languages
and their pretrained models are available in Appendix A.1.

https://bertlang.unibocconi.it/


Language ISO Language Family Pretrained BERT Model

Arabic AR Afroasiatic AraBERT (Antoun et al., 2020)
English EN Indo-European BERT (Devlin et al., 2019)
Finnish FI Uralic FinBERT (Virtanen et al., 2019)
Indonesian ID Austronesian IndoBERT (Wilie et al., 2020)
Japanese JA Japonic Japanese-char BERT 17

Korean KO Koreanic KR-BERT (Lee et al., 2020)
Russian RU Indo-European RuBERT (Kuratov and Arkhipov, 2019)
Turkish TR Turkic BERTurk (Schweter, 2020)
Chinese ZH Sino-Tibetan Chinese BERT (Devlin et al., 2019)

Table 1: Overview of selected languages and their re-
spective pretrained monolingual BERT models.

gual BERT models on five downstream NLP tasks:
named entity recognition (NER), sentiment analy-
sis (SA), question answering (QA), universal de-
pendency parsing (UDP), and part-of-speech tag-
ging (POS).

Named Entity Recognition. We rely on the
following NER datasets: CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003), FiNER (Ruoko-
lainen et al., 2020), Chinese Literature (Xu et al.,
2017), KMOU NER29, WikiAnn (Pan et al., 2017;
Rahimi et al., 2019).

Sentiment Analysis aims to classify the sentiment
polarity (positive or negative). We rely on HARD
(Elnagar et al., 2018), IMDb Movie Reviews
(Maas et al., 2011), Indonesian Prosa (Purwarianti
and Crisdayanti, 2019), Yahoo Movie Reviews31,
NSMC32, RuReviews (Smetanin and Komarov,
2019), Turkish Movie and Product Reviews (Demir-
tas and Pechenizkiy, 2013), ChnSentiCorp33.

Question Answering finds answers to questions
within a context paragraph. We use SQuADv1.1
(Rajpurkar et al., 2016), KorQuAD 1.0 (Lim et al.,
2019), SberQuAD (Efimov et al., 2020), TQuAD36,
DRCD (Shao et al., 2019), TyDiQA-GoldP (Clark
et al., 2020).

Dependency Parsing predicts syntactic head-
dependent relationships in a sentence. We rely on
Universal Dependencies (Nivre et al., 2016, 2020)
v2.6 (Zeman et al., 2020) for all languages.

Part-of-Speech Tagging classifies the correspond-
ing part-of-speech tags for each word in a sentence.
We again use Universal Dependencies (Nivre et al.,
2016, 2020) v2.6 (Zeman et al., 2020).

Detailed descriptions of all the task data, includ-
ing preprocessing steps, and which datasets are
associated with which language, are provided in
Appendix A.4.

3.2 Task-Based Fine-Tuning

Fine-Tuning Setup. We use the standard fine-
tuning setup of Devlin et al. (2019) for all tasks
besides UDP: for that, we use a transformer-based
variant (Glavaš and Vulić, 2020) of the standard
deep biaffine attention dependency parser (Dozat
and Manning, 2017). Besides full model fine-
tuning, we also evaluate all models within a more
efficient setup based on adapters (Rebuffi et al.,
2017; Houlsby et al., 2019; Stickland and Murray,
2019; Pfeiffer et al., 2020a,b,c,d; Lauscher et al.,
2020a; Rücklé et al., 2020a,b, inter alia): addi-
tional parameter sets that are fine-tuned while the
original pretrained model is kept frozen. Adapters
have been shown to perform well for cross-lingual
transfer by training language-specific adapters
(Pfeiffer et al., 2020c,d), we here evaluate whether
they perform equally well in monolingual setups.

In summary, we distinguish between four differ-
ent setups for each task: 1) fully fine-tune a mono-
lingual BERT model; 2) fully fine-tune mBERT
on the task; 3) inject a task adapter into mBERT,
and fine-tune by updating the task adapter param-
eters (labeled +ATask henceforth); 4) inject both a
dedicated language adapter available via Adapter-
Hub (Pfeiffer et al., 2020b), and a task adapter into
mBERT, and then fine-tune by updating only the
task adapter parameters (+ALang, Task).

For all settings, we average scores over three
random initializations on the development set. On
the test set, we report the results of the initialization
that achieved the highest score on the development
set.

Evaluation Measures. We report F1 scores for
NER, accuracy scores for SA and POS, unlabeled
and labeled attachment scores (UAS & LAS) for
UDP, and exact match and F1 scores for QA.

Hyper-Parameters and Technical Details. We
use Adam (Kingma and Ba, 2015) in all experi-
ments, with initial learning rates of 3e− 5 for full
fine-tuning, and 5e−4 for the adapter-based setups,
and linear learning rate decay.4 During training, we
evaluate a model every 500 gradient steps on the de-
velopment set, saving the best-performing model.5

4These learning rates were fixed after running several pre-
liminary experiments. Due to the large volume of our exper-
iments, we were unable to tune all the hyper-parameters for
each setting. We found that a higher learning rate works best
for adapter-based fine-tuning since the task adapter parameters
are learned from scratch (i.e., they are randomly initialized).

5Based on the respective evaluation measures. For QA and
UDP, we use the F1 scores and LAS, respectively.



We typically train for 10 epochs (full fine-tuning)
or 30 epochs (adapter-based).6 We rely on early
stopping (Prechelt, 1998), terminating training if
no performance gains are observed within five con-
secutive evaluation runs (= 2,500 steps). We train
with batch size 32 and max sequence length 256
for all tasks except QA. In QA, the batch size is
24, max sequence length 384, query length 64, and
document stride is set to 128.

3.3 Initial Results

We report our first set of results in Table 2. The
results on development sets are available in the Ap-
pendix in Table 10. We find that the performance
gap between monolingual models and mBERT
does exist to a large extent, confirming the intuition
from prior work. However, we also notice that the
score differences are largely dependent on the lan-
guage and task at hand. The largest performance
gains of monolingual models over mBERT are
found for FI, TR, KO, and AR. In contrast, mBERT
outperforms the IndoBERT (ID) model in all tasks
but SA, and performs competitively with the JA and
ZH monolingual models on most datasets. In gen-
eral, the gap is particularly narrow for POS tagging,
where all models tend to score high (in most cases
north of 95% accuracy). ID aside, we also see a
clear trend for UDP, with monolingual models out-
performing fully fine-tuned mBERT models, most
notably for FI and TR, and fully fine-tuned mBERT
models, in turn, outperforming the adapter-based
models. In what follows, we seek to understand
the causes of this behaviour in relation to different
factors such as used tokenizers, corpora sizes, as
well as languages and tasks in consideration.

In the remaining experiments, we focus on the
full fine-tuning setup, as we find that fine-tuning
mBERT with adapters appears to be effective only
when the fully fine-tuned mBERT is also effective,
compared to the monolingual models (e.g., in EN,
ID, JA, ZH). Both adapter approaches (+ALang, Task,
+ATask) work similarly well. The former works
best for UDP, whereas the latter works best for QA.
Although language adapters are proven to yield
significant gains over task-only adapters in cross-
lingual settings (Pfeiffer et al., 2020c,d), we be-
lieve that either choice is generally suitable, albeit
not ideal if maximum performance is required, to
tackle monolingual tasks.7

6The exceptions are FI and ID QA: there we do full fine-

Lang Model NER SA QA UDP POS

Test Test Dev Test Test
F1 Acc EM / F1 UAS / LAS Acc

AR

Monolingual 91.1 95.9 68.3 / 82.4 90.1 / 85.6 96.8
mBERT 90.0 95.4 66.1 / 80.6 88.8 / 83.8 96.8
+ ALang, Task 89.7 95.7 66.9 / 81.0 88.0 / 82.8 96.8
+ ATask 89.6 95.6 66.7 / 81.1 87.8 / 82.6 96.8

EN

Monolingual 91.5 91.6 80.5 / 88.0 92.1 / 89.7 97.0
mBERT 91.2 89.8 80.9 / 88.4 91.6 / 89.1 96.9
+ ALang, Task 91.4 89.4 80.1 / 87.7 91.3 / 88.7 96.7
+ ATask 90.5 89.8 79.9 / 87.6 91.0 / 88.3 96.7

FI

Monolingual 92.0 —– 69.9 / 81.6 95.9 / 94.4 98.4
mBERT 88.2 —– 66.6 / 77.6 91.9 / 88.7 96.2
+ ALang, Task 88.4 —– 65.7 / 77.1 91.8 / 88.5 96.6
+ ATask 88.5 —– 65.2 / 77.3 90.8 / 87.0 95.7

ID

Monolingual 91.0 96.0 66.8 / 78.1 85.3 / 78.1 92.1
mBERT 93.5 91.4 71.2 / 82.1 85.9 / 79.3 93.5
+ ALang, Task 93.5 93.6 70.8 / 82.2 85.4 / 78.1 93.4
+ ATask 93.5 90.6 70.6 / 82.5 84.8 / 77.4 93.4

JA

Monolingual 72.4 88.0 —– / —– 94.7 / 93.0 98.1
mBERT 73.4 87.8 —– / —– 94.0 / 92.3 97.8
+ ALang, Task 70.9 88.4 —– / —– 93.5 / 91.6 97.8
+ ATask 71.5 88.6 —– / —– 93.6 / 91.6 97.7

KO

Monolingual 88.8 89.7 74.2 / 91.1 90.3 / 87.2 97.0
mBERT 86.6 86.7 69.7 / 89.5 89.2 / 85.7 96.0
+ ALang, Task 86.2 86.3 70.0 / 89.8 88.3 / 84.3 96.2
+ ATask 86.2 86.5 69.8 / 89.7 87.8 / 83.9 96.2

RU

Monolingual 91.0 95.2 64.3 / 83.7 93.1 / 89.9 98.4
mBERT 90.0 95.0 63.3 / 82.6 91.9 / 88.5 98.2
+ ALang, Task 89.0 94.7 62.8 / 82.4 91.8 / 88.1 98.2
+ ATask 89.6 94.7 62.9 / 82.5 92.0 / 88.3 98.2

TR

Monolingual 92.8 88.8 60.6 / 78.1 79.8 / 73.2 96.9
mBERT 93.8 86.4 57.9 / 76.4 74.5 / 67.4 95.7
+ ALang, Task 93.5 84.8 56.9 / 75.8 73.0 / 64.7 95.9
+ ATask 93.0 83.9 55.3 / 75.1 72.4 / 64.1 95.7

ZH

Monolingual 76.5 95.3 82.3 / 89.3 88.6 / 85.6 97.2
mBERT 76.1 93.8 82.0 / 89.3 88.1 / 85.0 96.7
+ ALang, Task 75.4 94.8 82.1 / 89.4 87.3 / 83.8 96.4
+ ATask 75.2 94.1 82.4 / 89.6 87.5 / 83.9 96.5

Table 2: Model Performances on Named Entity Recog-
nition (NER), Sentiment Analysis (SA), Question An-
swering (QA), Universal Dependency Parsing (UDP,
and Part-of-Speech Tagging (POS). We use develop-
ment (dev) sets only for QA. Finnish (FI) SA and
Japanese (JA) QA lack respective datasets.

4 Tokenizer vs. Corpus Size

4.1 Pretraining Corpus Size

The size of the pretraining corpora plays an
important role in the performance of transformers
(Liu et al., 2019; Conneau et al., 2020; Zhang et al.,
2020, inter alia). Therefore, we compare how
much data each monolingual model was trained on
with the amount of data in the respective language
that mBERT has seen during training. Given that
mBERT was trained on entire Wikipedia dumps8,
we estimate the latter by the total number of words

tuning for 20 epochs due to slower convergence.
7We further elaborate on this verdict in Appendix B.3.
8https://github.com/google-research/

bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 1: The number of words (in Billions) in mono-
lingual pretraining corpora versus the respective mono-
lingual portions of mBERT’s pretraining corpus

across all articles listed for each Wiki9. For the
monolingual models, we extract information on
pretraining data from the model documentation.
If no exact numbers are explicitly stated, and the
pretraining corpora are unavailable to us, we make
estimations based on the information the authors
provide. Details on any particular assumptions and
estimations we make are given in Appendix A.2.
Our findings are depicted in Figure 1. For EN, JA,
RU, and ZH, both the respective monolingual model
and mBERT were trained on similar amounts of
monolingual data. On the other hand, we see that
the AR, ID, FI, KO, and TR monolingual models
were trained from about twice (KO) up to more
than 40 times (TR) as much data in their language
than mBERT.

4.2 Tokenizer
Compared to monolingual models, mBERT is sub-
stantially more limited in terms of the “space”, that
is, the parameter budget it can allocate for each of
its 104 languages in its vocabulary. Additionally,
monolingual tokenizers are typically trained by na-
tive speaking experts aware of relevant linguistic
phenomena exhibited by their target language. We
thus inspect how this affects the tokenizations of
monolingual data produced by our sample of mono-
lingual models and mBERT. We tokenize examples
from Universal Dependencies (Nivre et al., 2016,
2020) v2.6 (Zeman et al., 2020) treebanks (further
details given in Appendix A.3) and compute two
metrics (Ács, 2019). The first metric is the sub-
word fertility, measuring the average number of

9Based on numbers from https://meta.m.
wikimedia.org/wiki/List_of_Wikipedias
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Figure 2: Subword fertility (i.e., the average number of
subwords produced per tokenized word (Ács, 2019)) of
monolingual tokenizers versus the mBERT tokenizer.
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Figure 3: Proportion of continued words (i.e., words
split into multiple subword tokens (Ács, 2019)) in
monolingual corpora tokenized by monolingual mod-
els vs. mBERT.

subwords produced per tokenized word. A mini-
mum fertility value of 1 means that the tokenizer’s
vocabulary contains every single word in the tok-
enized text. We plot the fertility scores in Table 2.
We find that mBERT has similar fertility values as
its monolingual counterparts for EN, ID, JA, and
ZH. In contrast, mBERT has a much higher fertility
for AR, FI, KO, RU, and TR, indicating that such
languages may be over-segmented. mBERT’s fer-
tility is the lowest for EN, which is likely due to
mBERT having seen the most data in this language
during training, as well as due to English being a
morphologically poor language in comparison to
languages such as AR, FI, RU, or TR. The JA model
is the only monolingual one with a fertility higher
than mBERT because the JA tokenizer is character-
based and thus by design produces a maximum
number of word pieces.

The second metric is the proportion of words

https://meta.m.wikimedia.org/wiki/List_of_Wikipedias
https://meta.m.wikimedia.org/wiki/List_of_Wikipedias


in the corpus where the tokenized word is con-
tinued across at least two sub-tokens (denoted by
continuation symbols ##). Whereas the fertility is
concerned with how aggressively a tokenizer splits,
the proportion of these continued words measures
how often it splits words. Intuitively, low scores are
preferable for both metrics as they indicate that the
tokenizer is well suited to the language. The plots
in Figure 3 show similar trends as with the fertility
statistic. In addition to AR, FI, KO, RU, and TR,
where there were already conspicuous differences
in fertility, mBERT also produces a proportion of
continued words more than twice as high as the
monolingual model for ID.

We discuss additional tokenization statistics, fur-
ther highlighting the differences (or lack thereof)
between the individual monolingual tokenizers and
the mBERT tokenizer, in Appendix B.1.

4.3 New Pretrained Models

The differences in pretraining corpora and tok-
enizer statistics from the previous sections seem
to align with the variations in downstream perfor-
mance across languages. In particular, it appears
that the performance gains of monolingual models
over mBERT are larger for languages where the
differences between the respective tokenizers and
pretraining corpora sizes are also larger (AR, FI,
KO, RU, TR) and vice-versa (EN, JA, ZH).10 There-
fore, we hypothesize that both the data size and
the tokenizer are among the main driving forces of
downstream task performance. In order to disentan-
gle the effects of these two factors, we pretrain new
models for AR, FI, ID, KO, and TR (the languages
that exhibited the largest discrepancies regarding
the two factors) on Wikipedia data.

We train three model variants for each lan-
guage. First, we train two new monolingual BERT
models on the same data, one with the original
monolingual tokenizer (wiki-mono-mono) and one
with the mBERT tokenizer (wiki-mono-mBERT).11

Additionally, we retrain the embedding layer
of mBERT with the respective monolingual to-
kenizer (wiki-mBERT-retrained). Having the

10The only exception is ID, where the monolingual model
has seen significantly more data and also scores lower on the
tokenizer metrics, yet underperforms mBERT in most tasks.
We suspect this exception to be due to the IndoBERT model
being uncased, whereas the remaining models are cased.

11The only exception is ID, where, instead of relying on
the uncased IndoBERT tokenizer by Wilie et al. (2020), we
introduce a new cased tokenizer with identical vocabulary size
(30,521).

wiki-mono-mono models to compare against the
monolingual models trained on significantly more
data but with the same tokenizer, we implicitly
disentangle the effect of the data size.

Pretraining Setup. We pretrain new BERT mod-
els for each language on its respective Wikipedia
dump.12 We apply two preprocessing steps to
obtain clean data for pretraining. First, we use
WikiExtractor (Attardi, 2015) to extract text pas-
sages from the raw dumps. Next, we follow
Pyysalo et al. (2020) and utilize UDPipe (Straka
et al., 2016) parsers pretrained on UD data13 to
segment the extracted text passages into texts with
document, sentence, and word boundaries.

Following Wu and Dredze (2020), we only use
masked language modeling (MLM) as pretraining
objective and omit the next sentence prediction
task as Liu et al. (2019) find it does not yield
performance gains. We otherwise mostly follow
the default pretraining procedure by Devlin et al.
(2019).
We pretrain the new monolingual models
(wiki-mono) from scratch for 1M steps with batch
size 64. We choose a sequence length of 128 for
the first 900,000 steps and 512 for the remaining
100,000 steps. We enable whole word masking
(Devlin et al., 2019) for the FI monolingual models,
following the pretraining procedure for FinBERT
(Virtanen et al., 2019). For the retrained mBERT
models, we run MLMing for 250,000 steps (similar
to Artetxe et al. (2020)) with batch size 64 and
sequence length 512, otherwise using the same
hyper-parameters as for the monolingual models.
We freeze all parameters outside the embedding
layer. For more details see Appendix A.5.

Results. We perform the same evaluations on
downstream tasks for our new models as described
in §3. We report the results in Table 3. Full results
including development set scores are available in
Table 11 in the appendix.

Our results show that the models trained with
dedicated monolingual tokenizers outperform their
counterparts with multilingual tokenizers in most
tasks, with particular consistency for QA, UDP, and
SA. In NER, the models trained with multilingual
tokenizers score competitively or higher than the
monolingual ones in half of the cases. Overall, the

12We use Wiki dumps from June 20, 2020 - e.g. fiwiki-
20200720-pages-articles.xml.bz2 for FI.

13https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3131
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Lang Model Tokenizer NER SA QA UDP POS

Test Test Dev Test Test
F1 Acc EM / F1 UAS / LAS Acc

AR

wiki-mono mono 91.7 95.6 67.7 / 81.6 89.2 / 84.4 96.6
wiki-mono mBERT 90.0 95.5 64.1 / 79.4 88.8 / 84.0 97.0
mBERT mono 91.2 95.4 66.9 / 81.8 89.3 / 84.5 96.4
mBERT mBERT 90.0 95.4 66.1 / 80.6 88.8 / 83.8 96.8

FI

wiki-mono mono 89.1 —– 66.9 / 79.5 93.7 / 91.5 97.3
wiki-mono mBERT 90.0 —– 65.1 / 77.0 93.6 / 91.5 97.0
mBERT mono 88.1 —– 66.4 / 78.3 92.4 / 89.6 96.6
mBERT mBERT 88.2 —– 66.6 / 77.6 91.9 / 88.7 96.2

ID

wiki-mono mono 92.5 96.0 73.1 / 83.6 85.0 / 78.5 93.9
wiki-mono mBERT 93.2 94.8 67.0 / 79.2 84.9 / 78.6 93.6
mBERT mono 93.9 94.6 74.1 / 83.8 86.4 / 80.2 93.8
mBERT mBERT 93.5 91.4 71.2 / 82.1 85.9 / 79.3 93.5

KO

wiki-mono mono 87.1 88.8 72.8 / 90.3 89.8 / 86.6 96.7
wiki-mono mBERT 85.8 87.2 68.9 / 88.7 88.9 / 85.6 96.4
mBERT mono 86.6 88.1 72.9 / 90.2 90.1 / 87.0 96.5
mBERT mBERT 86.6 86.7 69.7 / 89.5 89.2 / 85.7 96.0

TR

wiki-mono mono 93.4 87.0 56.2 / 73.7 76.1 / 68.9 96.3
wiki-mono mBERT 93.3 84.8 55.3 / 72.5 75.3 / 68.3 96.5
mBERT mono 93.7 85.3 59.4 / 76.7 77.1 / 70.2 96.3
mBERT mBERT 93.8 86.4 57.9 / 76.4 74.5 / 67.4 95.7

Table 3: Performances of our new wiki-mono

and wiki-mbert-retrained models fine-tuned for
Named Entity Recognition (NER), Sentiment Analy-
sis (SA), Question Answering (QA), Universal De-
pendency Parsing (UDP), and Part-of-Speech Tagging
(POS). We add the original fully fine-tuned mBERT
and group model counterparts w.r.t. tokenizer choice to
facilitate a direct comparison between respective coun-
terparts. mBERT model with mono tokenizer refers
to wiki-mbert-retrained and mBERT model with
mBERT tokenizer refers to the original fully fine-tuned
mBERT. We use development sets only for QA.

performance gap is the smallest for POS tagging
(at most 0.5% accuracy). We observe the largest
gaps for QA (6.1 EM / 4.4 F1 in ID), SA (3.2%
accuracy in ID), and UDP (2.8 LAS in TR).

Overall we find that for 39 out of 48 task, model,
and language combinations, the monolingual tok-
enizer outperforms the mBERT version. We were
able to improve the monolingual performance of
mBERT for 19 out of 24 languages and tasks by
only replacing the tokenizer and, thus, leveraging
a specialized monolingual version. These results
establish that, in fact, the tokenizer plays a funda-
mental role in the downstream task performance.

5 Further Analysis

5.1 Qualitative Analysis

Qualitatively and at first glance, our results dis-
played in Table 2 seem to confirm the prevailing
view that monolingual models are more effective
than multilingual models (Rönnqvist et al., 2019;
Antoun et al., 2020; de Vries et al., 2019; Virtanen
et al., 2019, inter alia). However, our broad range
of experiments reveals certain nuances that were
previously undiscovered.

In contrast to previous work which primarily
attributes gaps in performance to mBERT be-
ing under-trained with respect to individual lan-
guages (Rönnqvist et al., 2019; Wu and Dredze,
2020), our results, when disentangling the effect
of the tokenizer (as seen in Table 3), convinc-
ingly show that a large portion of existing per-
formance gaps can be attributed to the capabil-
ity of the designated tokenizer. When choos-
ing a monolingual tokenizer that scores signifi-
cantly lower in fertility and the proportion of con-
tinued words than the mBERT tokenizer (such
as for AR, FI, ID, KO, TR), performance gains
can be made relatively consistently, irrespective
of whether the models themselves are monolin-
gual (wiki-mono-mono versus wiki-mono-mbert)
or multilingual (wiki-mbert-retrained versus
fully fine-tuned mBERT).

Whenever the differences between monolingual
models and mBERT with respect to the tokenizer
(as measured by the fertility or proportion of con-
tinued words) and the pretraining corpus size are
small, such as for EN, JA, and ZH, the performance
gap is typically also small. In QA, we even find
mBERT to be favorable for these languages. There-
fore, we conclude that monolingual models are not
superior to multilingual models per se, but rather
most of the time, gain an unfair advantage in a di-
rect comparison by incorporating more pretraining
data and using more capable tokenizers.

Note that similar findings are observed with both
modes of task fine-tuning. We discuss the effective-
ness of adapter-based fine-tuning in the context of
monolingual tasks in Appendix B.3.

5.2 Correlation Analysis

To uncover some of the hidden patterns in our re-
sults (Tables 2 and 3), we perform a statistical anal-
ysis assessing the correlation between the individ-
ual factors (pretraining data size, subword fertil-
ity, proportion of continued words) and the down-
stream performance. Although our framework may
not provide enough data points to be statistically
representative, we argue that the correlation coef-
ficient can still provide reasonable indications and
reveal patterns in our results not immediately evi-
dent by looking at the tables.

Figure 4 shows that both decreases in the propor-
tion of continued words and the fertility correlate
with an increase in downstream performance rel-
ative to fully fine-tuned mBERT across all tasks.
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Figure 4: Spearman’s ρ correlation of a relative de-
crease in the proportion of continued words (Cont.
Proportion), a relative decrease in fertility, and a
relative increase in pretraining corpus size with a
relative increase in downstream performance over
fully fine-tuned mBERT. For the proportion of con-
tinued words and the fertility, we consider fully
fine-tuned mBERT, the wiki-mono models, and the
wiki-mbert-retrained models. For the pretraining
corpus size, we consider the original monolingual mod-
els and the wiki-mono-mono models. We exclude the
ID models as explained in Appendix B.2.

The correlation is stronger for UDP and QA, where
we find models with monolingual tokenizers to
outperform their counterparts with the mBERT to-
kenizer consistently. The correlation is weaker for
NER and POS tagging, which is also expected,
considering the inconsistency of the results.14

Overall, we find that the fertility and the propor-
tion of continued words have a similar effect on
the monolingual downstream performance as the
corpus size for pretraining. This indicates that the
tokenizer’s capability of representing a language
plays an equal role as the amount of data a model
sees during training. Consequently, choosing a sub-
optimal tokenizer will result in a deterioration of
the downstream performance.

6 Conclusion

In this work, we have conducted the first widely tar-
geted empirical investigation concerning the mono-
lingual performance of monolingual and multilin-
gual models. While our results support the exis-
tence of a performance gap in most but not all lan-
guages and tasks, further analysis revealed that this
performance gap is often significantly smaller than
previously assumed and only exacerbated in certain
languages by incorporating substantially more pre-
training data and using more capable, monolingual
tokenizers.

Further, we have disentangled the effect of the
pretrained corpus size from the tokenizers, in order
to identify the importance of either on the down-

14For further information see Appendix B.2.

stream task performance. We have trained new
monolingual models on the same data but with two
different tokenizers; one being the dedicated tok-
enizer of the monolingual model provided by native
speakers; the other being the automatically gener-
ated multilingual mBERT tokenizer. We find that
for (almost) every task and language, the monolin-
gual tokenizer outperforms the mBERT tokenizer,
establishing that a specialized vocabulary plays an
equally important role on the downstream perfor-
mance as the pretraining data set size.

Consequently, our results suggest that a more
deliberate balancing of individual languages’ rep-
resentations within the tokenizer’s vocabulary (e.g.,
by merging monolingual vocabularies) can close
the gap between monolingual and multilingual
models in cases where the tokenizer currently
makes the difference.
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Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
XCOPA: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2362–2376, Online. As-
sociation for Computational Linguistics.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak,
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Goran Glavaš, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222–7240, Online. Association for Computa-
tional Linguistics.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, and Ayu Purwarianti. 2020. IndoNLU:
Benchmark and resources for evaluating Indonesian
natural language understanding. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 843–857, Suzhou, China.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arxiv preprint.

Jingjing Xu, Ji Wen, Xu Sun, and Qi Su. 2017. A
discourse-level named entity recognition and rela-
tion extraction dataset for chinese literature text.
arXiv preprint.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Elia
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Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano Cec-
chini, Giuseppe G. A. Celano, Slavomı́r Čéplö,
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ter, Cláudia Freitas, Kazunori Fujita, Katarı́na
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Hlaváčová, Florinel Hociung, Petter Hohle, Jena
Hwang, Takumi Ikeda, Radu Ion, Elena Irimia,
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tinen, Hüner Kaşıkara, Andre Kaasen, Nadezhda
Kabaeva, Sylvain Kahane, Hiroshi Kanayama,
Jenna Kanerva, Boris Katz, Tolga Kayadelen, Jes-
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trin Marheinecke, Héctor Martı́nez Alonso, André
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A Reproducibility

A.1 Selection of Pretrained Models

All of the pretrained models we use, besides the
Korean KR-BERT15, are openly available on the
HuggingFace model hub16 and compatible with the
HuggingFace transformers Python library (Wolf
et al., 2020). Models and their associated tokeniz-
ers have unique identifiers by which they can be
downloaded and integrated into Python code.

Whenever both uncased and cased
model variants are available, we select the
cased variant because the mBERT model
(bert-base-multilingual-cased) is also cased.
Furthermore, based on initial evaluations, we find
that using cased models is generally advantageous
for our task sample. Accordingly, we select
the cased BERT (bert-base-cased) model
(Devlin et al., 2019) for EN, the cased FinBERT
(TurkuNLP/bert-base-finnish-cased-v1)
model (Virtanen et al., 2019) for FI, and the cased
BERTurk (dbmdz/bert-base-turkish-cased)
model (Schweter, 2020) for TR.

For AR, Antoun et al. (2020) provide two ver-
sions: AraBERTv0.1 and AraBERTv1. The only
difference between them is that the pretraining
data for version 1 was pre-segmented with Farasa
(Abdelali et al., 2016) before applying WordPiece.
Based on their evaluations, as well as our own
preliminary experiments, both AraBERT models
perform similarly well, each one being the supe-
rior choice for certain tasks. Therefore, we select
v0.1, which does not require pre-segmentation in
the fine-tuning stage.

For JA, the publishers from Inui Laboratory, To-
hoku University, provide four models17: character-
tokenized (with and without whole word masking
enabled) and subword tokenized (with and with-
out whole word masking enabled). We select the
character-tokenized Japanese BERT model because
it achieved considerably higher scores on prelimi-
nary NER fine-tuning evaluations. Since mBERT
was trained without WWM, we also select the
Japanese model trained without WWM.

For KO, we use the KR-BERT (Lee et al.,
2020) model18 by the Computational Linguis-

15Which is openly available at https://github.com/
snunlp/KR-BERT

16https://huggingface.co/models
17https://github.com/cl-tohoku/

bert-japanese
18https://github.com/snunlp/KR-BERT
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tics Lab at Seoul National University. We have
also experimented with the KoBERT19 model
(monologg/kobert), introduced by SKTBrain, but
found that it exhibited significant performance is-
sues in QA20. The KR-BERT model in particular
offers a more suitable tokenizer than KoBERT and
outperforms KoBERT on several Korean bench-
mark datasets despite having been trained on less
data (Lee et al., 2020).

The ID IndoBERT (Wilie et al., 2020) model
(indobenchmark/indobert-base-p2), the RU

RuBERT (Kuratov and Arkhipov, 2019) model
(DeepPavlov/rubert-base-cased) by Deep-
Pavlov , and the ZH Chinese-BERT (Devlin et al.,
2019) model (bert-base-chinese) by Google
are, to the best of our knowledge, the only openly
available models for their respective language
following the original bert-base architecture and
pretraining procedure by Devlin et al. (2019).

A.2 Estimating the Pretraining Corpora
Sizes

For reference, mBERT was pretrained on the en-
tire Wikipedia dumps of all languages it covers
(Devlin et al., 2019).21 All of the monolingual
models were also pretrained on their respective
monolingual Wikipedia dumps. However, most
publishers employed additional pretraining data
from other sources for their monolingual models
(Antoun et al., 2020; Virtanen et al., 2019; Kuratov
and Arkhipov, 2019; Devlin et al., 2019; Lee et al.,
2020).

AraBERT (Antoun et al., 2020) was additionally
pretrained on manually scraped Arabic news arti-
cles, the Open Source International Arabic News
(OSIAN) Corpus (Zeroual et al., 2019), and the
1.5B words Arabic Corpus (El-khair, 2016), for
a total of about 3.3B words. Devlin et al. (2019)
have also included the BooksCorpus (Zhu et al.,
2015) for BERT, for a total of about 3.3B words.
FinBERT (Virtanen et al., 2019) was also pre-
trained on aggressively cleaned and filtered data
from multiple Finnish news corpora, online dis-
cussion posts, and an unrestricted internet crawl,
for a total of about 3B words. KR-BERT (Lee
et al., 2020) was trained on 233M words (20M sen-

19https://github.com/SKTBrain/KoBERT
20in line with results by https://github.com/

monologg/KoBERT-KorQuAD
21https://github.com/google-research/

bert/blob/master/multilingual.md#
list-of-languages

tences), including both Korean Wikipedia and news
data. BERTurk (Schweter, 2020) was, in addition
to Wikipedia, pretrained on the Turkish OSCAR
corpus (Ortiz Suárez et al., 2020), a special corpus
by Kemal Oflazer22, and various OPUS23 corpora
for a total of about 4.4B words. IndoBERT (Wilie
et al., 2020) was trained on a ∼3.6B word corpus
collected from 15 different sources, which also in-
clude the Indonesian OSCAR corpus (Ortiz Suárez
et al., 2020), an Indonesian Wiki dump, and data
from Twitter. The monolingual pretraining corpus
for RuBERT (Kuratov and Arkhipov, 2019) also in-
cluded Russian news articles, accounting for about
20% of the total data. Kuratov and Arkhipov (2019)
only further state on GitHub24 that they used about
6.5GB of data in total. Based on the number of
words in the Russian Wikipedia dump (781M on
September 10, 2020, according to Wikimedia25),
and the insight that the Wikipedia dump constituted
80% of the total corpus, we estimate the RuBERT
pretraining corpus at about 976M words. Consider-
ing that Kuratov and Arkhipov (2019) most likely
filtered the data and used an older Wikipedia dump,
this estimation should serve as an upper bound.

The JA26 and ZH (Devlin et al., 2019) BERT
models were only pretrained on Wikipedia data,
so there should not be any major differences to
mBERT in terms of training corpus size. For ZH,
we can assume that Devlin et al. (2019) used the
same data cleaning and filtering procedure as for
mBERT, and, according to a GitHub issue27, the
ZH corpus consisted of about 25M sentences. We
do not know the exact number of words, so we
make an estimation based on the number of words
in the raw Wikipedia dump (482M on September
10, 2020, according to Wikimedia25). For JA, we
use the publishers’ scripts to recreate the corpus
and calculate a total word count of about 1.03B.
We use a newer Wikipedia dump28 because the one
used by the publishers is not available anymore.

We estimate the language-specific shares of the
mBERT pretraining corpus by word counts of the

22http://www.andrew.cmu.edu/user/ko/
23http://opus.nlpl.eu/
24https://github.com/deepmipt/

DeepPavlov/issues/1074
25https://meta.m.wikimedia.org/wiki/

List_of_Wikipedias
26https://github.com/cl-tohoku/

bert-japanese
27https://github.com/google-research/

bert/issues/155
28jawiki-20200820-pages-articles-multistream.xml.bz2
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respective raw Wikipedia dumps, according to num-
bers obtained from Wikimedia25 on September 10,
2020 (December 10, 2020 for ID and TR). We
obtain the following numbers:

• 327M words for AR

• 3.7B for EN

• 134M for FI

• 142M for ID

• 1.1B for JA

• 125M for KO

• 781M for RU

• 104M for TR

• 482M for ZH

Devlin et al. (2019) only included text passages
from the articles, and used older Wikipedia dumps,
so these numbers should serve as as upper limits,
yet be reasonably accurate.

A.3 Data for Tokenizer Analyses

We tokenize the training and development splits
of the UD (Nivre et al., 2016, 2020) v2.6 (Zeman
et al., 2020) treebanks listed in Table 4.

A.4 Fine-Tuning Datasets

Named Entity Recognition
We use the CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003) for EN, the FiNER dataset
(Ruokolainen et al., 2020) for FI, the Chinese Lit-
erature Dataset (Xu et al., 2017) for ZH, and the
Korea Maritime and Ocean University (KMOU)
NER dataset29 for KO. For AR, ID, JA, RU, and
TR, we use the respective portions of the WikiAnn
dataset, which was originally introduced by Pan
et al. (2017) to provide NER data for 282 languages
and further balanced and split for 41 of these lan-
guages by Rahimi et al. (2019).

Except for the KMOU dataset, all NER
datasets are readily split into training, develop-
ment, and test splits. The KMOU dataset con-
sists of hundreds of single files. Similar to
the KoBERT NER implementation30, we use the
EXOBRAIN NE CORPUS 009.txt file as our dev set,
the EXOBRAIN NE CORPUS 010.txt as our test set,
and the rest of the files for training.

We use simple shell-based preprocessing to
transform all datasets into the same format, but
do not perform any additional cleaning of the data.

29https://github.com/kmounlp/NER
30https://github.com/eagle705/

pytorch-bert-crf-ner#ner-tagset

In a final preprocessing step, we split sequences
larger than the model’s specified maximum se-
quence length. Table 5 provides an overview of the
NER datasets, including the number of sequences
per dataset split after this final preprocessing step.

Sentiment Analysis
We try to select datasets for which reference scores
are available, whenever possible. Furthermore, we
ensure that the datasets are balanced, meaning that
there are equally many positive and negative in-
stances. By doing so, we prevent the model from
potentially learning polarity biases present in the
data. We perform additional preprocessing only
when necessary, but ensure that all datasets are in
the same format and are split three-way for training,
development, and testing.

We select the HARD dataset (Elnagar et al.,
2018) for AR, the IMDb movie reviews dataset
(Maas et al., 2011) for EN, the prosa sentiment anal-
ysis dataset (Purwarianti and Crisdayanti, 2019)
for ID, the Yahoo Movie Reviews datasets31 for
JA, the Naver Sentiment Movie Corpus (NSMC)32

for KO, the RuReviews dataset (Smetanin and Ko-
marov, 2019) for RU, the movie and product re-
views datasets by Demirtas and Pechenizkiy (2013),
merged into a single corpus, for TR, and the
ChnSentiCorp dataset33 for ZH. To the best of our
knowledge, an openly available SA dataset for FI

currently does not exist.
For the HARD (Elnagar et al., 2018) dataset, we

shuffle and split the balanced-reviews.tsv file
using 80% of the data for training, and 10% each
for development and testing (80/10/10 split). The
dataset contains four classes - very negative (1),
negative (2), positive (4), very positive (5), so we
combine classes (1) and (2) into a single negative
polarity (0), and (4) and (5) into a single positive
polarity (1). Finally, we clean the texts by removing
line breaks and replacing tabs by single spaces.

The ChnSentiCorp33 dataset, which is also used
for evaluation by Cui et al. (2020), is already split
and we do not perform any additional preprocess-
ing.

The EN IMDb movie reviews (Maas et al., 2011)
dataset comes as a collection of single text files sep-
arated into two equally large sets for training and

31 https://github.com/dennybritz/
sentiment-analysis/tree/master/data

32 https://www.lucypark.kr/docs/
2015-pyconkr/#39

33https://github.com/pengming617/bert_
classification/tree/master/data
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testing, each further separated into equally large
sets of positive and negative instances. We ran-
domly choose 20% of the training instances for our
development set, keeping the test set the same to
facilitate comparisons with models in the literature.
Finally, we combine all small files into one large
file per data split and clean the data in the same
way as for the HARD dataset.

We obtain the ID prosa dataset (Purwarianti and
Crisdayanti, 2019) from Kaggle.34 We do not use
the version of the dataset by Wilie et al. (2020) be-
cause it is not binary, not balanced, and the test set
is hidden. Instead, we obtain the original dataset,
remove neutral sentiment instances, and balance
the dataset. We split the original training data 90/10
for training and development, and use the original
testing data for testing.

The JA Yahoo Movie Reviews dataset31 is also
used by Bataa and Wu (2019). The dataset contains
5 classes (ratings from 1 to 5) and is unbalanced.
To obtain a binary and balanced dataset, we dis-
card neutral instances (3), combine negative and
positive instances as we do for the HARD dataset,
and randomly discard instances from the dominant
polarity until both polarities have equal support.
Finally, we use an 80/10/10 split and remove line
breaks from the examples. We end up with the
same number of instances per split as Bataa and
Wu (2019).

The KO Naver Sentiment Movie Corpus
(NSMC32) is a balanced dataset based on positive
and negative reviews from the Naver Movies web-
site. It is also used for evaluation by the publishers
of KR-BERT (Lee et al., 2020) and KoBERT19.
It comes in a 75/25 split for training/testing. We
randomly select of 20% of the training data for de-
velopment as we do for the English IMDb dataset,
but do not perform any additional preprocessing.

The RU RuReviews dataset (Smetanin and Ko-
marov, 2019) was collected from product reviews
for women’s clothing and accessories. It comes as
a single balanced 3-class dataset, from which we
discard the neutral reviews. We use an 80/10/10
split and clean whitespace characters in the same
way as for the HARD dataset.

The TR movie and product reviews datasets by
Demirtas and Pechenizkiy (2013) are already bal-
anced and binary, so we only distribute the positive
and negative instances evenly into training, devel-

34https://www.kaggle.com/ilhamfp31/
dataset-prosa/

opment, and testing sets according to an 80/20/20
split.

Question Answering

For EN, we use the Stanford Question Answering
Dataset (SQuAD) Version 1.1 (Rajpurkar et al.,
2016). Each example in SQuAD consists of a con-
text passage, a question, and one or more pairs of
correct answer texts, and their starting positions
within the context. All of the QA datasets we use
follow exactly this format. SQuAD was released
as a reading comprehension benchmark, so the test
dataset is not publicly available.

For KO, we use the KorQuAD 1.0 dataset (Lim
et al., 2019), which was crowdsourced from Ko-
rean Wikipedia article and introduced as a public
benchmark in the same way as SQuAD. Therefore,
only training and development splits of the dataset
are publicly available.

For RU, we use the Sberbank Question Answer-
ing Dataset (SberQuAD), which was originally cre-
ated for a competition by the Russian financial
institution Sberbank and formally introduced to the
scientific community by Efimov et al. (2020). Since
the original splits for evaluation were never made
public, the DeepPavlov team split the original train-
ing set into training and development splits35. We
use these splits by DeepPavlov in our experiments.

We use the TQuAD36 dataset for TR, which con-
tains data on Turkish & Islamic science history and
was released as part of the Teknofest 2018 Artifi-
cial Intelligence competition. It is split into training
and development data.

For ZH, we use the Delta Reading Comprehen-
sion Dataset (DRCD; Shao et al., 2019), which was
crowdsourced from Chinese Wikipedia articles. It
is readily split into training, development, and test
data.

For AR, FI, and ID, we extract all examples in
their respective language from the multilingual
TyDi QA secondary Gold Passage (GoldP) task
dataset (Clark et al., 2020), which comes split into
training and development data. Test sets are un-
available.

Considering that most of the datasets are only
split into training and development splits, we de-
cide not to use any test data in our QA experiments.

35http://docs.deeppavlov.ai/en/master/
features/models/squad.html

36https://tquad.github.io/
turkish-nlp-qa-dataset/
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Dependency Parsing & Part-of-Speech
Tagging
We do not specifically preprocess any of the UD
(Nivre et al., 2016, 2020; Zeman et al., 2020) tree-
banks. We give an overview of the treebanks we
use in Table 8. We extract the head and depen-
dency relation annotations for dependency parsing
and the UPOS annotations for POS tagging. We
do not perform additional preprocessing such as
cleaning or filtering of the data.

A.5 Training Procedure of New Models

We pretrain our models on single Nvidia Tesla
V100, A100, and Titan RTX GPUs with 32GB,
40GB, and 24GB of video memory, respectively.
To support larger batch sizes, we train in mixed-
precision (fp16) mode. Following Wu and Dredze
(2020), we only use masked language modeling as
pretraining objective and omit the next sentence
prediction task as Liu et al. (2019) find it does not
yield performance gains. We otherwise mostly
follow the default pretraining procedure by Devlin
et al. (2019).
We pretrain the new monolingual models
(wiki-mono) from scratch for 1M steps with batch
size 64. We choose a sequence length of 128 for
the first 900,000 steps and 512 for the remaining
100,000 steps. In both phases, we warm up the
learning rate to 1e− 4 over the first 10,000 steps,
then decay linearly. We use the Adam optimizer
with weight decay (AdamW) (Loshchilov and
Hutter, 2019) with default hyper-parameters
and a weight decay of 0.01. We enable whole
word masking (Devlin et al., 2019) for the FI

monolingual models, following the pretraining
procedure for FinBERT (Virtanen et al., 2019).
To lower computational requirements for the
monolingual models with mBERT tokenizers, we
remove all tokens from mBERT’s vocabulary that
do not appear in the pretraining data. We, thereby,
obtain vocabularies of size

• 78,193 for AR

• 60,827 for FI

• 72,787 for ID

• 66,268 for KO

• 71,007 for TR,

which for all languages reduces the number of
parameters in the embedding layer significantly,
compared to the 119,547 word piece vocabulary of
mBERT.

For the retrained mBERT models
(wiki-mbert-retrained), we run masked
language modeling for 250,000 steps (similar
to Artetxe et al. (2020)) with batch size 64 and
sequence length 512, otherwise using the same
hyper-parameters as for the monolingual models.
In order to retrain the embedding layer, we first
resize it to match the vocabulary of the respective
monolingual tokenizer. We initialize the positional
embeddings, segment embeddings, and embed-
dings of special tokens ([CLS], [SEP], [PAD],
[UNK], [MASK]) from mBERT, and reinitialize the
remaining embeddings randomly. We freeze all
parameters outside the embedding layer. For all
pretraining runs, we set the random seed to 42.

B Further Analyses and Discussions

B.1 Tokenization Analysis

In our tokenization analysis in §4.2 of the main text,
we only include the fertility and the proportion of
continued words as they are sufficient to illustrate
and quantify the differences between tokenizers. In
support of the findings in §4.2 and for complete-
ness, we provide additional tokenization statistics
here.

For each tokenizer, Table 9 lists the respective
vocabulary size and the proportion of its vocabu-
lary also contained in mBERT. It shows that the
tokenizers scoring lower in fertility (and accord-
ingly performing better) than mBERT are often not
adequately covered by mBERT’s vocabulary. For
instance, only 5.6% of the AraBERT (AR) vocabu-
lary is covered by mBERT.

Figure 5 compares the proportion of unknown
tokens ([UNK]) in the tokenized data. It shows that
the proportion is generally extremely low, i.e., the
tokenizers can typically split unknown words into
known subwords.

Similar to the work by Ács (2019), the Figures 6
and 7 compare the tokenizations produced by the
monolingual models and mBERT with the refer-
ence tokenizations provided by the human dataset
annotators with respect to their sentence lengths.
We find that the tokenizers scoring low in fertility
and the proportion of continued words typically
exhibit sentence length distributions much closer
to the reference tokenizations by human UD anno-
tators, indicating they are more capable than the
mBERT tokenizer. Likewise, the monolingual mod-
els’ and mBERT’s sentence length distributions are



closer for languages with similar fertility and pro-
portion of continued words, such as EN, JA, and
ZH.

B.2 Correlation Analysis

To uncover some of the hidden patterns in our re-
sults (Tables 2 and 3), we perform a statistical anal-
ysis assessing the correlation between the individ-
ual factors (pretraining data size, subword fertil-
ity, proportion of continued words) and the down-
stream performance.

Figure 8 shows that both decreases in the propor-
tion of continued words and the fertility correlate
with an increase in downstream performance rel-
ative to fully fine-tuned mBERT across all tasks.
The correlation is stronger for UDP and QA, where
we found models with monolingual tokenizers to
outperform their counterparts with the mBERT to-
kenizer consistently. The correlation is weaker for
NER and POS tagging, which is also expected,
considering the inconsistency of the results.

Somewhat surprisingly, the tokenizer metrics
seem to be more indicative of high downstream
performance than the size of the pretraining cor-
pus. We believe that this in parts due to the overall
poor performance of the uncased IndoBERT model,
which we (in this case unfairly) compare to our
cased id-wiki-mono-mono model. Therefore, we
plot the same correlation matrix excluding ID in
Figure 4.

Compared to Figure 8, the overall correlations
for the proportion of continued words and the fer-
tility remain mostly unaffected. In contrast, the
correlation for the pretraining corpus size becomes
much stronger, confirming that the subpar perfor-
mance of IndoBERT is, in fact, an outlier in this
scenario. Leaving out Indonesian also strengthens
the indication that the performance in POS tagging
correlates more with the data size than with the
tokenizer, although we argue that this indication
may be misleading. The performance gap is gen-
erally very minor in POS tagging. Therefore, the
Spearman correlation coefficient, which only takes
the rank into account, but not the absolute score
differences, is particularly sensitive to changes in
POS tagging performance.

Finally, we plot the correlation between the three
metrics and the downstream performance under
consideration of all languages and models, includ-
ing the adapter-based fine-tuning settings, to gain
an understanding of how pronounced their effects

are in a more ”noisy” setting.
As Figure 9 shows, the three factors still corre-

late with the downstream performance in a similar
manner even when not isolated. This correlation
tells us that even when there may be other factors
that could have an influence, these three factors
are still highly indicative of the downstream perfor-
mance.

We also see that the correlation coefficients for
the proportion of continued words and the fertility
are nearly identical, which is expected based on
the visual similarity of the respective plots (seen in
Figures 2 and 3).

B.3 Effectiveness of Adapter-Based
Fine-Tuning

We primarily included the adapter-based settings in
our experimental framework based on the hypothe-
sis that their effectiveness in cross-lingual settings
(Pfeiffer et al., 2020c) could also transfer to mono-
lingual settings.

However, our results suggest that adapters can-
not close the performance gap between monolin-
gual models and mBERT in most cases where it
exists, despite their effectiveness in cross-lingual
settings. The adapter-based variants of mBERT typ-
ically perform competitively with, and on rare oc-
casions, even surpass the fully fine-tuned mBERT
or monolingual models in performance. However,
these scenarios seem to occur only when the per-
formance gap is already small, in which case some
randomness in the optimization process can already
change the outcome qualitatively. Therefore, we
argue that these individual occasions are not signif-
icant. Nevertheless, the competitive performance
of adapters, for many languages and tasks even
with the monolingual models trained on drastically
more data, is a testament to the effectiveness of
(parameter-)efficient deep learning approaches in
NLP. Particularly in scenarios where maximum
performance is not required and when computa-
tional resources are scarce, we highly suggest us-
ing mBERT with such adapter-based fine-tuning
approaches.

Furthermore, we show that using language
adapters (and invertible adapters) in conjunction
with task adapters, as proposed by Pfeiffer et al.
(2020c), is overall slightly more effective than us-
ing task adapters only. However, the effectiveness
of language adapters seems also to be task-related.
On the one hand, the dependency parsing results



favor the setting that includes a language adapter in
addition to the task adapter. On the other hand, we
observe the opposite for five out of nine languages
in QA. In many cases, both settings perform equally
well, or the performance gap is negligibly narrow.

Based on these results, it is difficult to recom-
mend one setting over the other. Nevertheless, we
suggest the following: For languages where lan-
guage adapters are readily available on the Adapter-
Hub (Pfeiffer et al., 2020b), there is generally little
harm in using them. If language adapters are not
available, it is most likely sufficient for monolin-
gual tasks just to train new task adapters instead.

C Full Results

For compactness, we have only reported the perfor-
mances of our models on the respective test datasets
in the main text.37 For completeness, we also in-
clude the full tables, including development (dev)
dataset performances averaged over three random
initializations, as described in §3. Table 10 shows
the full results corresponding to Table 2 (initial
results) and Table 11 shows the full results corre-
sponding to Table 3 (results for our new models).

37Except for QA, where we do not use any test data



Language Dataset # Examples (Train / Dev) # Words Total
AR UD Arabic-PADT 6075 / 909 254192

EN

UD English-LinES 3176 / 1032

449977
UD English-EWT 12543 / 2002
UD English-GUM 4287 / 784
UD English-ParTUT 1781 / 156

FI
UD Finnish-FTB 14981 / 1875

324680
UD Finnish-TDT 12217 / 1364

ID UD Indonesian-GSD 4477 / 559 110141

JA UD Japanese-GSD 7027 / 501 179571

KO
UD Korean-GSD 4400 / 950

390369
UD Korean-Kaist 23010 / 2066

RU

UD Russian-GSD 3850 / 579
1130482UD Russian-SynTagRus 48814 / 6584

UD Russian-Taiga 3138 / 945

TR UD Turkish-IMST 3664 / 988 47830

ZH
UD Chinese-GSD 3997 / 500

222558
UD Chinese-GSDSimp 3997 / 500

Table 4: Overview - UD v2.6 (Zeman et al., 2020) data used for our tokenizer analyses

Language Dataset Reference Data Source # Examples (Train/Dev/Test) # Labels

AR WikiAnn Pan et al. (2017); Rahimi et al. (2019) Wikipedia 20000 / 10000 / 10000 7
EN CoNLL-2003 Tjong Kim Sang and De Meulder (2003) News Articles 14041 / 3250 / 3453 8
FI FiNER Ruokolainen et al. (2020) News Articles 13497 / 986 / 3512 6
ID WikiAnn Pan et al. (2017); Rahimi et al. (2019) Wikipedia 20000 / 10000 / 10000 7
JA WikiAnn Pan et al. (2017); Rahimi et al. (2019) Wikipedia 20202 / 10100 / 10113 7
KO KMOU NER 29 News Articles 23056 / 468 / 463 22
RU WikiAnn Pan et al. (2017); Rahimi et al. (2019) Wikipedia 20000 / 10000 / 10000 7
TR WikiAnn Pan et al. (2017); Rahimi et al. (2019) Wikipedia 20000 / 10000 / 10000 7
ZH Chinese Literature Dataset Xu et al. (2017) Literature 24270 / 1902 / 2844 7

Table 5: Named entity recognition dataset overview

Language Dataset Reference Domain # Examples (Train / Dev / Test) # Labels Balanced

AR HARD Elnagar et al. (2018) Hotel Reviews 84558 / 10570 / 10570 2 Yes
EN IMDb Movie Reviews Maas et al. (2011) Movie Reviews 20000 / 5000 / 25000 2 Yes
FI — — — — — —
ID Indonesian Prosa Purwarianti and Crisdayanti (2019) Prose 6853 / 763 / 409 2 Yes
JA Yahoo Movie Reviews 31 Movie Reviews 30545 / 3818 / 3819 2 Yes
KO NSMC 32 Movie Reviews 120000 / 30000 / 50000 2 Yes
RU RuReviews Smetanin and Komarov (2019) Product Reviews 48000 / 6000 / 6000 2 Yes
TR Movie & Product Reviews Demirtas and Pechenizkiy (2013) Movie & Product Reviews 13009 / 1627 / 1629 2 Yes
ZH ChnSentiCorp 33 Hotel Reviews 9600 / 1200 / 1200 2 Yes

Table 6: Sentiment analysis dataset overview

Language Dataset Reference Domain # Examples (Train / Dev)

AR TyDiQA-GoldP Clark et al. (2020) Wiki 14805 / 921
EN SQuAD v1.1 Rajpurkar et al. (2016) Wiki 87599 / 10570
FI TyDiQA-GoldP Clark et al. (2020) Wiki 6855 / 782
ID TyDiQA-GoldP Clark et al. (2020) Wiki 5702 / 565
JA — — — —
KO KorQuAD 1.0 Lim et al. (2019) Wiki 60407 / 5774
RU SberQuAD Efimov et al. (2020) Wiki 45328 / 5036
TR TQuAD 36 — 8308 / 892
ZH DRCD Shao et al. (2019) Wiki 26936 / 3524

Table 7: Question Answering dataset overview



Language Dataset # Examples (Train / Dev / Test)

AR UD Arabic-PADT 6075 / 909 / 680
EN UD English-EWT 12543 / 2002 / 2077
FI UD Finnish-FTB 14981 / 1875 / 1867
ID UD Indonesian-GSD 4477 / 559 / 557
JA UD Japanese-GSD 7027 / 501 / 543
KO UD Korean-GSD 4400 / 950 / 989
RU UD Russian-GSD 3850 / 579 / 601
TR UD Turkish-IMST 3664 / 988 / 983
ZH UD Chinese-GSD 3997 / 500 / 500

Table 8: Universal dependency parsing and part-of-speech tagging dataset (Zeman et al., 2020) overview

Lang Tokenizer Reference Vocabulary Size % Vocab in mBERT

MULTI bert-base-multilingual-cased Devlin et al. (2019) 119,547 100

AR aubmindlab/bert-base-arabertv01 Antoun et al. (2020) 64,000 5.6
EN bert-base-cased Devlin et al. (2019) 28,996 66.4
FI TurkuNLP/bert-base-finnish-cased-v1 Virtanen et al. (2019) 50,105 14.3
ID indobenchmark/indobert-base-p2 Wilie et al. (2020) 30521 40.5
JA cl-tohoku/bert-base-japanese-char 17 4,000 99.1
KO KR-BERT-char-wordpiece Lee et al. (2020) 16,424 47.4
RU DeepPavlov/rubert-base-cased Kuratov and Arkhipov (2019) 119,547 21.1
TR dbmdz/bert-base-turkish-cased Schweter (2020) 32,000 23.0
ZH bert-base-chinese Devlin et al. (2019) 21,128 79.4

Table 9: Comparison of vocabulary sizes of the selected monolingual BERT tokenizers and mBERT

ar en fi id ja ko ru tr zh

Language

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

P
ro

p
or

ti
on

U
N

K

Monolingual

mBERT

Figure 5: Proportion of unknown tokens in respective monolingual corpora tokenized by monolingual models vs.
mBERT
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(d) Indonesian – ID
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(e) Japanese – JA
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Figure 6: Sentence length distributions of monolingual UD corpora tokenized by respective monolingual BERT
models and mBERT, compared to the reference tokenizations by human UD treebank annotators - Part 1
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(a) Russian – RU

0 50 100 150 200 250

Sentence length [Tokens]

0.00

0.02

0.04

0.06

0.08

P
ro

p
or

ti
on

Reference Tokenization

Monolingual Tokenization

mBERT Tokenization

(b) Turkish – TR
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Figure 7: Sentence length distributions of monolingual UD corpora tokenized by respective monolingual BERT
models and mBERT, compared to the reference tokenizations by human UD treebank annotators - Part 2
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Figure 8: Spearman’s ρ correlation of a relative decrease in the proportion of continued words (Cont. Proportion), a
relative decrease in fertility, and a relative increase in pretraining corpus size with a relative increase in downstream
performance over fully fine-tuned mBERT. For the proportion of continued words and the fertility, we consider
fully fine-tuned mBERT, the wiki-mono models, and the wiki-mbert-retrained models. For the pretraining
corpus size, we consider the original monolingual models and the wiki-mono-mono models.
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Figure 9: Spearman’s ρ correlation of a relative decrease in the proportion of continued words (Cont. Proportion), a
relative decrease in fertility, and a relative increase in pretraining corpus size with a relative increase in downstream
performance over fully fine-tuned mBERT. We consider all languages and models.



Lang Model NER SA QA UDP POS

Dev Test Dev Test Dev Dev Test Dev Test
F1 F1 Acc Acc EM / F1 UAS / LAS UAS / LAS Acc Acc

AR

Monolingual 91.5 91.1 96.1 95.9 68.3 / 82.4 89.4 / 85.0 90.1 / 85.6 97.5 96.8
mBERT 90.3 90.0 95.8 95.4 66.1 / 80.6 87.8 / 83.0 88.8 / 83.8 97.2 96.8
+ ALang, Task 90.2 89.7 96.1 95.7 66.9 / 81.0 87.0 / 81.9 88.0 / 82.8 97.3 96.8
+ ATask 90.0 89.6 96.1 95.6 66.7 / 81.1 86.7 / 81.6 87.8 / 82.6 97.3 96.8

EN

Monolingual 95.4 91.5 91.6 91.6 80.5 / 88.0 92.6 / 90.3 92.1 / 89.7 97.1 97.0
mBERT 95.7 91.2 90.1 89.8 80.9 / 88.4 92.1 / 89.6 91.6 / 89.1 97.0 96.9
+ ALang, Task 95.5 91.4 89.9 89.4 80.1 / 87.7 91.6 / 88.9 91.3 / 88.7 96.9 96.7
+ ATask 95.6 90.5 90.1 89.8 79.9 / 87.6 91.6 / 88.9 91.0 / 88.3 96.8 96.7

FI

Monolingual 93.3 92.0 —– —– 69.9 / 81.6 95.7 / 93.9 95.9 / 94.4 98.1 98.4
mBERT 90.9 88.2 —– —– 66.6 / 77.6 91.1 / 88.0 91.9 / 88.7 96.0 96.2
+ ALang, Task 91.6 88.4 —– —– 65.7 / 77.1 91.1 / 87.7 91.8 / 88.5 96.3 96.6
+ ATask 91.2 88.5 —– —– 65.2 / 77.3 90.2 / 86.3 90.8 / 87.0 95.8 95.7

ID

Monolingual 90.9 91.0 94.6 96.0 66.8 / 78.1 84.5 / 77.4 85.3 / 78.1 92.0 92.1
mBERT 93.7 93.5 93.1 91.4 71.2 / 82.1 85.0 / 78.4 85.9 / 79.3 93.3 93.5
+ ALang, Task 93.6 93.5 93.1 93.6 70.8 / 82.2 84.3 / 77.4 85.4 / 78.1 93.6 93.4
+ ATask 93.3 93.5 92.9 90.6 70.6 / 82.5 83.7 / 76.5 84.8 / 77.4 93.5 93.4

JA

Monolingual 72.1 72.4 88.7 88.0 —– / —– 96.0 / 94.7 94.7 / 93.0 98.3 98.1
mBERT 73.4 73.4 88.8 87.8 —– / —– 95.5 / 94.2 94.0 / 92.3 98.1 97.8
+ ALang, Task 70.6 70.9 89.4 88.4 —– / —– 95.1 / 93.6 93.5 / 91.6 98.1 97.8
+ ATask 71.4 71.5 89.2 88.6 —– / —– 95.2 / 93.7 93.6 / 91.6 98.1 97.7

KO

Monolingual 88.6 88.8 89.8 89.7 74.2 / 91.1 88.5 / 85.0 90.3 / 87.2 96.4 97.0
mBERT 87.3 86.6 86.7 86.7 69.7 / 89.5 86.9 / 83.2 89.2 / 85.7 95.8 96.0
+ ALang, Task 87.3 86.2 86.6 86.3 70.0 / 89.8 85.9 / 81.6 88.3 / 84.3 96.0 96.2
+ ATask 87.1 86.2 86.7 86.5 69.8 / 89.7 85.5 / 81.1 87.8 / 83.9 95.9 96.2

RU

Monolingual 91.9 91.0 95.2 95.2 64.3 / 83.7 92.4 / 90.1 93.1 / 89.9 98.6 98.4
mBERT 90.2 90.0 95.2 95.0 63.3 / 82.6 91.5 / 88.8 91.9 / 88.5 98.4 98.2
+ ALang, Task 90.1 89.0 95.2 94.7 62.8 / 82.4 91.2 / 88.3 91.8 / 88.1 98.6 98.2
+ ATask 90.0 89.6 95.2 94.7 62.9 / 82.5 90.9 / 88.0 92.0 / 88.3 98.5 98.2

TR

Monolingual 93.1 92.8 89.3 88.8 60.6 / 78.1 78.0 / 70.9 79.8 / 73.2 97.0 96.9
mBERT 93.7 93.8 86.4 86.4 57.9 / 76.4 72.6 / 65.2 74.5 / 67.4 95.5 95.7
+ ALang, Task 93.3 93.5 86.2 84.8 56.9 / 75.8 71.1 / 63.0 73.0 / 64.7 96.0 95.9
+ ATask 93.0 93.0 86.1 83.9 55.3 / 75.1 70.4 / 62.0 72.4 / 64.1 95.5 95.7

ZH

Monolingual 77.0 76.5 94.8 95.3 82.3 / 89.3 88.1 / 84.9 88.6 / 85.6 96.6 97.2
mBERT 76.0 76.1 93.1 93.8 82.0 / 89.3 87.1 / 83.7 88.1 / 85.0 96.1 96.7
+ ALang, Task 75.6 75.4 94.0 94.8 82.1 / 89.4 86.0 / 82.1 87.3 / 83.8 96.1 96.4
+ ATask 75.4 75.2 93.8 94.1 82.4 / 89.6 85.8 / 81.9 87.5 / 83.9 96.1 96.5

Table 10: Full Results - Model Performances on Named Entity Recognition (NER), Sentiment Analysis (SA),
Question Answering (QA), Universal Dependency Parsing (UDP, and Part-of-Speech Tagging (POS). Finnish (FI)
SA and Japanese (JA) QA lack respective datasets.



Lang Model Tokenizer NER SA QA UDP POS

Dev Test Dev Test Dev Dev Test Dev Test
F1 F1 Acc Acc EM / F1 UAS / LAS UAS / LAS Acc Acc

AR

wiki-mono mono 88.6 91.7 96.0 95.6 67.7 / 81.6 88.4 / 83.7 89.2 / 84.4 97.3 96.6
wiki-mono mBERT 90.1 90.0 95.9 95.5 64.1 / 79.4 87.8 / 83.2 88.8 / 84.0 97.4 97.0

mBERT mono 91.9 91.2 95.9 95.4 66.9 / 81.8 88.2 / 83.5 89.3 / 84.5 97.2 96.4
mBERT mBERT 90.3 90.0 95.8 95.4 66.1 / 80.6 87.8 / 83.0 88.8 / 83.8 97.2 96.8

FI

wiki-mono mono 91.9 89.1 —– —– 66.9 / 79.5 93.6 / 91.0 93.7 / 91.5 97.0 97.3
wiki-mono mBERT 91.8 90.0 —– —– 65.1 / 77.0 93.1 / 90.6 93.6 / 91.5 96.2 97.0

mBERT mono 91.0 88.1 —– —– 66.4 / 78.3 92.2 / 89.3 92.4 / 89.6 96.3 96.6
mBERT mBERT 90.0 88.2 —– —– 66.6 / 77.6 91.1 / 88.0 91.9 / 88.7 96.0 96.2

ID

wiki-mono mono 93.0 92.5 93.9 96.0 73.1 / 83.6 83.4 / 76.8 85.0 / 78.5 93.6 93.9
wiki-mono mBERT 93.3 93.2 93.9 94.8 67.0 / 79.2 84.0 / 77.4 84.9 / 78.6 93.4 93.6

mBERT mono 93.8 93.9 94.4 94.6 74.1 / 83.8 85.5 / 78.8 86.4 / 80.2 93.5 93.8
mBERT mBERT 93.7 93.5 93.1 91.4 71.2 / 82.1 85.0 / 78.4 85.9 / 79.3 93.3 93.5

KO

wiki-mono mono 87.9 87.1 89.0 88.8 72.8 / 90.3 87.9 / 84.2 89.8 / 86.6 96.4 96.7
wiki-mono mBERT 86.9 85.8 87.3 87.2 68.9 / 88.7 86.9 / 83.2 88.9 / 85.6 96.1 96.4

mBERT mono 87.9 86.6 88.2 88.1 72.9 / 90.2 87.9 / 83.9 90.1 / 87.0 96.2 96.5
mBERT mBERT 87.3 86.6 86.7 86.7 69.7 / 89.5 86.9 / 83.1 89.2 / 85.7 95.8 96.0

TR

wiki-mono mono 93.5 93.4 87.5 87.0 56.2 / 73.7 74.4 / 67.3 76.1 / 68.9 95.9 96.3
wiki-mono mBERT 93.2 93.3 85.8 84.8 55.3 / 72.5 73.2 / 66.0 75.3 / 68.3 96.4 96.5

mBERT mono 93.5 93.7 86.1 85.3 59.4 / 76.7 74.7 / 67.6 77.1 / 70.2 96.1 96.3
mBERT mBERT 93.7 93.8 86.4 86.4 57.9 / 76.4 72.6 / 65.2 74.5 / 67.4 95.5 95.7

Table 11: Full Results - Performances of our new wiki-mono and wiki-mbert-retrained models fine-tuned
for Named Entity Recognition (NER), Sentiment Analysis (SA), Question Answering (QA), Universal Depen-
dency Parsing (UDP), and Part-of-Speech Tagging (POS). We add the original fully fine-tuned mBERT and group
counterparts w.r.t. tokenizer choice to facilitate a direct comparison between respective counterparts. mBERT
model with mono tokenizer refers to wiki-mbert-retrained and mBERT model with mBERT tokenizer refers
to the original fully fine-tuned mBERT.


