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Abstract—Decision-making tasks usually follow five steps:
identifying the problem, collecting data, extracting evidence, iden-
tifying arguments, and making the decision. This paper focuses
on two steps of decision-making: extracting evidence by building
knowledge graphs (KGs) of specialized topics and identifying
sentences’ arguments through sentence-level argument mining.
We present a hybrid model that combines topic modeling using
latent Dirichlet allocation (LDA) and word embeddings to obtain
external knowledge from structured and unstructured data. We
use a topic model to extract topic- and sentence-specific evidence
from the structured knowledge base Wikidata. A knowledge
graph is constructed based on the cosine similarity between
the entity word vectors of Wikidata and the vector of the
given sentence. A second graph based on topic-specific articles
found via Google supplements the general incompleteness of the
structured knowledge base. Combining these graphs, we obtain
a graph-based model that, as our evaluation shows, successfully
capitalizes on both structured and unstructured data.

Index Terms—Topic model, knowledge graph, argument min-
ing

I. INTRODUCTION

Knowledge graphs (KGs) have been used in many real-
world applications in recent years where knowledge is required
to solve a task in addition to raw data. We focus on solving
argument mining tasks. It is challenging to understand argu-
ments without further relevant world knowledge. We tackle
this problem by connecting the entities in a sentence and the
sentence topic with paths through a locally created knowledge
graph. To do this, we use structured data (Wikidata) and un-
structured data (Google search) for each sentence and extract
paths leading from one entity to another. Latent Dirichlet
allocation (LDA) [1] improves the quality of connections in
the knowledge graph by ensuring that the paths do not leave
the context of the topic.

Early work introduced world knowledge into NLP tasks
by harnessing manually constructed knowledge bases like
Wikidata or DBPedia [2], [3]. Soon after realizing the incom-
pleteness of structured knowledge sources, authors provided
world knowledge from data such as Wikipedia [4]. Having
problems with noise in unstructured sources, more recent
work combines both structured and unstructured data [5]–[7].

Fig. 1. The proposed framework to build Knowledge Graph paths: The main
idea of using KG paths is augmented by LDA-driven property selection (blue
box) and unstructured knowledge enrichment via Google search (red box).

Motivated by the similarity of argument-based tasks, utilizing
and enhancing pre-trained language models like BERT [8] has
gained substantial popularity [9]–[16]. In comparison, besides
being simpler, our approach focuses on the knowledge graph
itself and how it can be efficiently traversed. Figure 1 shows
the idea of the framework. We use LDA to extract KG paths
from structured and unstructured data that stay on topic. Our
contributions are as follows:

1) We develop a graph-based approach leveraging evidence
from structured knowledge bases via latent Dirichlet
allocation.

2) We propose a comparably efficient dynamic breadth-
first search algorithm using word embeddings to create
a sparse knowledge graph.

3) We introduce a method to enrich a knowledge graph
with unstructured data from Google via OpenIE.

4) We evaluate the quality of our knowledge graph on the
argument mining task.

II. RELATED WORK

Recent work that combines both structured and unstructured
data proposes new benchmarks on various tasks, including



question answering [5], [6], document classification [7], and
argument classification task [17] [18]. Clark et al. [5] solve
non-diagram multiple-choice science exams with over 90%
(8th grade) and 83% (12th grade) accuracy. Their Aristo
project consists of three different methods: (1) statistical and
information retrieval methods, including searching the exact
question in structured datasets, (2) reasoning methods using
semi-structured data via OpenIE [19], and (3) large-scale
language model methods such as ELMo [20] and BERT [8].

In a similar graph-based approach but on a different prob-
lem, Lv et al. [6] build two graphs on structured data from
ConceptNet and unstructured data from Wikipedia for the
Commonsense Question Answering problem, achieving an
accuracy of 75.3% on the CommonsenseQA dataset [21].
While they select the top 10 sentences regarding the given
query as Wikipedia evidence via the Elastic Search engine,
we rely on several hundred of topic-specific sentences from
Google search ranked via PageRank [22]. Furthermore, instead
of ConceptNet, we use Wikidata as a source of structured data;
hence, we use the knowledge from Wikipedia. Additionally,
their rules for two nodes of the knowledge graphs being
connected are relatively strict: Either one is contained in the
other or only differs in one word. Focusing on unlabeled data,
we do not want two nodes to be this restricted. Instead, we
require only one common word between two nodes, which
adds more flexibility. While they build a graph from structured
data with each statement being a node and apply topology sort
to avoid cycles, we consider entities as vertices and relations
as edges, having no need for sorting. With their restrictive
search, Lv et al. consider 20 nodes in structured data and ten
sentences from unstructured data, while both of our graphs
from Wikidata and Google cover up to several hundred nodes.

Ostendorff et al. [7] enrich BERT with the author informa-
tion via Wikidata to improve book classification. However,
they do not select the relevant properties to traverse the
Wikidata knowledge graph. Instead, they use pre-trained graph
embeddings as author representations, trained on the full
Wikidata graph. In contrast, we use LDA to filter the properties
that match the input-specific context.

K-BERT [23] introduces a new approach of incorporating
KGs into BERT pre-training. BERT uses large-scale pre-
training corpora; however, it lacks knowledge of specialized
domains. Using KGs as additional information for represen-
tation learning can improve understanding of a domain and
enrich the sentence information. Additionally, the outputs from
pre-training can be fine-tuned on an NLP task to produce
predictions. One of K-BERT’s unique features is a “visible
matrix”. The input sentences are seen as sentence trees, and
each word is extended as a triple (word, relations, word2) if
it exists in the provided knowledge graph. The addition of a
“seeing layer” – another feature unique to K-BERT – then re-
duces the risk of knowledge noise, since the irrelevant entities
cannot “visit” each other. Another advantage of K-BERT is the
lower GPU memory requirement than the joint representations
of the word and KG embedding. In another approach, Lausher
et al. [24] introduced a model using “adapter training” to

inject conceptual knowledge into BERT.

III. METHOD

A. Method Overview

An argument is a combination of a topic and a sentence
holding evidence towards this topic, which are given as input
to the following methods. Our goal is to extract relevant paths
from the knowledge graph that may help in the downstream
argument mining task. The paths connect entites from the
given topic and sentence. As shown in Figure 1, a sentence and
its topic are the inputs to the Wikifier [25]1, which annotates
the input document with relevant Wikipedia concepts via a
PageRank-based method. The output is a JSON document
containing a list of annotated Wikipedia concepts along with
their corresponding Wikidata entities. As an input, we consider
the top ks concepts found in the sentence and the top kt
concepts found in the topic, each concept representing a
specific token.

Our main source of knowledge is the collaboratively con-
structed knowledge-based Wikidata. Wikidata is free, mul-
tilingual, and its broad community curation ensures a high
data quality with currently more than 88 million items E and
5519 properties R. Beyond a label (e.g., “Douglas Adams”)
and an identifier (e.g., “Q42”), each item covers a set of
statements S linking to other items. A statement expressing
semantic or ontological connections can be described as a
binary relation between entities (e.g., P69(Q42, Q691283)
represents the fact that Douglas Adams (Q42) got educated
at (P69) St John’s College (Q691283)). Formally, we describe
Wikidata as a graph G := (E,R, S) with S = {r(e1, e2)|r ∈
R, e1, e2 ∈ E}. Each entity (e.g., “Douglas Adams (Q42)”)
is connected to several other entities via specific properties
(e.g. “educated at (P69)”), creating a relation-based knowledge
structure. Therefore, it can be represented as a list of binary
relations (e.g., “educated at” (“Douglas Adams”, “St John’s
College”)). Graphically, this list can also be seen as a list
of triples, with each entity being a node and each relation
being an edge connecting these two nodes. Starting from
this graph, in every nd iterations, it queries Wikidata via
SPARQL-queries for a list of entities connected to one of
the unseen nodes in the graph via one of the properties of
interest. Figure 2 represents a sample Wikidata query with
its returned list of object-entities. By repeating this BFS-like
expansion in every iteration, a knowledge graph representing
the Wikidata-based concepts and their relations regarding the
given topic and sentence is extracted. To cover both sentence-
sensibility and sentence-topic-coherence, we extract two kinds
of paths from the graph using NetworkX2: (1) the shortest
path connecting one topic-concept with one sentence-concept
and (2) the shortest path connecting two sentence-concepts.
These paths are added as additional knowledge to help classify
whether the given sentence is an argument to the given topic.

1http://wikifier.org.
2https://networkx.github.io/.



Fig. 2. Expansion of the node “Douglas Adams” via a SPARQL query (dashed
arrow) per entity per property.

B. Property Selection with Latent Dirichlet Allocation

Building a knowledge graph over all the existing properties
per node is infeasible as: (1) In the worst case, at depth D
the graph already has

∑D
d=0 E0P

D nodes and
∑D

d=1 E0P
D

edges with E0 being the number of nodes that we started
with and P the number of properties. With the BFS runtime
of a graph being O(|edges| + |vertices|), the search is not
feasible for P=5519. (2) Most of the properties do not help
gain relevant information on the given concepts; they instead
drastically increase the noise. (3) Building the graph based on
a small fixed set of properties leaves out most of the available
information. (4) Alternatively, taking a predetermined set of
properties (e.g., the 50 most frequent ones) lacks coherence
to the given context. Considering these challenges, we select
relevant properties to the context of a specific sentence and
topic dynamically by latent Dirichlet allocation.

As shown in Figure 1, the blue box covers three steps: (1)
retrieving Wikipedia articles on the given entities, (2) training
an LDA model on the articles to discover properties related
to this specific context, and (3) embedding the properties into
the main core. While the first and third steps are lightweight
in terms of preprocessing effort, in the second step, we need
to find a way to compare the properties of Wikidata to
the LDA output. Fortunately, Wikidata provides a list of all
properties with a description. This information serves as an
interface between the properties and the words representing
the topics given by LDA (listed as input in Algorithm 1 under
“property descriptions”).

We derive the list of properties given a list of entities in
five steps (Algorithm 1):

1) Load the corresponding Wikipedia articles using the
Wikipedia-API to find the given entities’ articles and
extract the relevant texts (lines 1-3).

2) Train an LDA model to extract the most relevant topics
for this specific context (line 4). Preprocessing steps
include removing stopwords, punctuations, and the nu-
meric expressions from the articles after converting
them to lowercase, and finally, applying tokenization
and lemmatization. We build a corpus based on the
preprocessed text, which we apply LDA on. Then, we
extract the nt best topics represented as a batch of words
each (line 5).

ALGORITHM 1: PROPERTIES PER ENTITIES
Input: entities E, tfidf-threshold tt, count-threshold tc,

num-topics nt, num-properties np,
property-descriptions P

1 D ← ∅
2 forall e ∈ E do
3 D ← D∪Wikipedia article of e

4 L← LDA(D,nt)
5 T ← top-topics(L)
6 W ← ∅
7 forall t ∈ T do
8 forall w ∈ t do
9 if w /∈W and w /∈ stopwords then

10 W ←W ∪ w

11 F ← RANK BY TFIDF(W, tt)
12 P̃ ← ∅
13 forall w ∈ F do
14 forall p ∈ P do
15 if p /∈ P̃ and w ∈ p.info and p.count > tc

then
16 P̃ ← P̃ ∪ p

17 return SELECT FREQUENT(P̃ , np)

3) Rank the words representing the topics by their rele-
vance to the properties measured via TF-IDF (lines 6-
11). In order to retrieve the relevant yet indispensable
words, we consider the property descriptions as a batch
of documents. We build a matrix M with each cell mi,j

being the TF-IDF of the i-th word and the j-th document
and rank the words by their cumulative score

Si =
∑
j

mi,j ,

proceeding with only those achieving a given threshold.
4) Extract top-related properties by searching the property

descriptions for the top-ranked words (lines 12-16). We
consider every property with at least one word appearing
at least once. Ranked by their number of appearances
(line 17), we return the np most frequent properties.

C. Knowledge Retrieval with Dynamic BFS and Word Embed-
ding

Only one node connection out of the context can result in a
noisy path when building a graph dynamically. Furthermore,
if concepts are relevant with respect to more than one topic,
they build a knowledge graph with a set of subgraphs, each
covering the knowledge of one particular topic. Traversing
such a diverse graph is not optimal; instead, a more profound
exploration of one relevant subgraph could yield important
information. We address these challenges by only expanding
child nodes if the GloVe word embedding [26] of every node
(entity vector) belongs to the context of the input sentence



ALGORITHM 2: DYNAMIC BFS
Input: sentence s, concepts C, entities E,

embedding-model GV , cosine-threshold tcos,
max-nodes nn, max-depth nd

1 G← MultiDiGraph()
2 for i = 0 . . .#E − 1 do
3 G← G ∪ edge(Ci,“WIKIFIERED”, Ei)

4 vs ← avg({GV (t)|t ∈ tokenize(lower(s))})
5 P ← PROPERTIES PER ENTITIES(E)
6 d← 0, Evisited ← ∅, Etovisit ← E
7 while Etovisit 6= ∅ and d < nd and #Evisited < nn

do
8 d← d+ 1
9 forall e ∈ Etovisit do

10 Etovisit ← Etovisit \ e
11 if e /∈ Evisited then
12 Evisited ← Evisited ∪ {e}
13 forall (e, p, enew) ∈ QUERY(e, P ) do
14 if enew /∈ Evisited and enew /∈

Etovisit and
COSINE SIM(GV, vs, enew, tcos) then

15 Etovisit ← Etovisitd ∪ {enew}
16 G← G ∪ edge(e, p, enew)

17 return G

(sentence vector) with respect to a cosine similarity threshold.
GloVe primarily performs well on word analogy and word
similarity tasks, making it suitable for our setting. We lower
the computational complexity by not querying once per (entity,
relation)-pair but per entity, enabling a theoretical speedup of
the size of properties.

We map each word to its GloVe embedding and propose an
augmentation method to any BFS-based graph construction
in Algorithm 2. We initialize a directional graph and allow
multiple edges between two nodes via NetworkX3. For every
concept in the given topic or sentence annotated by an entity
via the Wikifier, we add two nodes and an edge to the graph
to represent their “WIKIFIERED”-relation (line 2–3). These
concept - and entity- nodes build the basis of our graph. Before
further growth of the graph, we calculate the sentence vector
vs as the average of the word vectors in the sentence (line
4) via the GloVe model, GV . Using Algorithm 1, we receive
a list of properties to build the graph (line 5). Lines 6-16
present a modified version of the standard BFS algorithm by
querying Wikidata (line 13) and pruning the graph (line 14). To
improve the query time of the increasing number of properties,
we adapt the SPARQL-queries by submitting a Wikidata query
per entity instead of one query per (entity, property)-pair. The
returned list of (subject, predicate, object) statements contains
potential new object-entities. However, before adding a new

3https://networkx.github.io/.

Fig. 3. Visualization of how word embeddings make the graph more sparse.

entity enew to the graph, we prove it to fulfill one of the
following conditions:

max{cos(vs, vt)|t ∈ enew} > tcos

max{cos(vs, vt)|t ∈ enew} = −1,

where tcos is a threshold and vt is the GV -vectors of the
lowercase tokens in enew. We thereby assure that at least one
of the tokens in the new entity stays in the given sentence
context. Being equivalent to -1 means that GV covers no
token in the entity. We make sure that particular entities
do not vanish. Therefore, we only exclude entities with a
maximum cosine being strictly greater than -1 but less than
tcos. Figure 3 visualizes the exploration of Wikidata into the
sentence-specific context for a sample input sentence “Trump
uses the military to prove his manhood”. Calculating the cosine
similarities yields:

cos(vs, GV (“Trump”) > tcos

cos(vs, GV (“Politics”)) > tcos

−1 < cos(vs, GV (“Investor”)) < tcos

Therefore, the sentence-specific relevant nodes “Donald
Trump” and “Politics” expand, the node “Investor” does not.

D. Enriching the Knowledge graph with OpenIE

Recent studies proved the importance of additional un-
structured data to compensate for the incompleteness of
structured knowledge bases like Wikidata [4]–[6]. However,
most approaches do not pick the relevant data and/or handle
the noise. Instead of using either hand-picked or randomly
chosen articles [4], we consider top-ranked articles based on
PageRank in the Google searches for a given topic. Using
OpenIE [19], we build a second knowledge graph and combine
them gradually to handle the noise. We enrich the knowledge
graph with unstructured data in 4 steps (Algorithm 3):

1) By searching Google for a given topic, we receive a
list of websites ranked by Google’s PageRank algorithm
(line 1). Considering the top nu websites, we extract
each sentence with at least three words (line 5) – the
minimum to let OpenIE build a triple from. To improve
efficiency (runtime, storage, and OpenIE limits), we rank
the sentences by their total character length (line 6) and



ALGORITHM 3: ENRICH
Input: graph G = (VG, EG), topic t, max-urls nu,

max-annotations na, max-chars ncmax
,

min-chars ncmin

1 U ← PAGE RANK(t, nu)
2 S ← ∅
3 forall u ∈ U do
4 forall s ∈ u.text do
5 S ← S ∪ s

6 S ← SORT BY SIZE(S)
7 corpus← EXHAUST(S, ncmax , ncmin)
8 A← OPENIE ANNOTATE(corpus)
9 for i = 0→ na do

10 (subject, predicate, object)← Ai

11 G← G+ edge(subject, predicate, object)
12 forall v ∈ VG do
13 if MATCH(v, subject) then
14 G← G ∪ edge(v, “OPENIED”, subject)

15 if MATCH(v, object) then
16 G← G ∪ edge(v, “OPENIED”, object)

17 return G

choose the longer sentences because we assume that they
carry more relevant information.

2) Extract (subject, predicate, object)-triples via Stanford’s
information extraction framework, OpenIE, which takes
the corpus as input (line 8). These triples, representing
statements, are the basis of our second knowledge graph
after removing duplicates.

3) Build the graph based on the first na statements (see
Algorithm 2). If for example, the sentence “In general
members of politics have power” is annotated with
the triple (“Members of politics”, “in general have”,
“power”), the subject and object become nodes while
the relation converts to an edge between them (line 11).

4) Combine the two knowledge graphs Gs = (Vs, Es) and
Gu = (Vu, Eu) by summing up the set of edges V:

V = {(u, v) ∈ Vs × Vu|∃t : t ∈ u, t ∈ v, t /∈ stopwords,
t /∈ numerics, |e| > 2},

with each node being a set of tokenized and lemmatized
tokens (lines 12-16). Figure 4 illustrates this procedure
for a sample sentence. The MATCH function connects
two nodes if they share at least one token matches the
other token.

IV. ARGUMENT IDENTIFICATION

The goals in this section are: 1) estimate the quality of our
knowledge graph and confirm the contribution of our methods,
2) determine if the knowledge graph is beneficial to argument
mining. The emerging field of argument mining aims to gather
data with an argumentative context regarding a topic of interest

Fig. 4. Given the input sentence, “Donald Trump has a lot of power.”, the
structured data-driven knowledge graph (green box) and the unstructured data
from Google (red box) are combined via a “MATCH” function. One can
discover the yellow path, which would not have been possible with only one
source of knowledge.

TABLE I
ARGUMENT SENTENCES:CLONING

Sentence Argument
The same would be said of clones. No Argument

DNA cloning has been used in genetic engineering
to create plants that offer better nutritional value. PRO

Cloning would undermine individuality and identity. CON

to support decision-making. Following Stab et al. [27], we
define an argument as a combination of a topic and a sentence
holding evidence towards this topic.

The Argument dataset employed is from the UKP Sentential
Argument Mining Corpus [28], and included eight topics.
Our classifier predicts one of three classes: No Argument
with respect to the topic, Argument for the topic (PRO), and
Argument against the topic (CON). Table I presents examples
of arguments on the topic of cloning.

A. Knowledge graph embedding

Before building the argument classifier using the KG paths,
the KG triples are first represented as low-dimensional vec-
tors. According to [29], KGs have three common patterns:
(anti)symmetry, inversion, and composition. The KGs from
the first part are antisymmetry patterns that are structured as
r(x, y) =⇒ ¬r(y, x) as given in the following example:
(classification system, part of, library science), (class, part of,
classification system). The capacities of TransE [30], Com-
plIEx [31] and RotatE [29] are usually used to get embeddings
for those patterns. We selected TransE for the embedding in
the following experiment. TransE is a simple and powerful
transnational distance model [32]. Its goal is to complete the
facts of a KG without additional knowledge. Its score function



is as follows:
− ‖ h+ r − t ‖1or2, (1)

where h and t refer to the entity’s vector, and r is the relation
connecting the h and t. For a triple, t would be the shortest
distance between h and r. The distance can be measured as a
L1 or a L2 function. However, one drawback of TransE is that
it is not good at handling 1-to-N, N-to-N, or N-to-1 relations
[32].

B. Experiment settings

Overall, there are two steps to the prediction: the first
step is the sentence and knowledge graph encoder, and the
second step is to transfer the vectors into a machine-learning
model and predict the output. We compare three kinds of
models: Models that only use knowledge graph embeddings
but no sentence embeddings, BERT as a robust model that
uses only sentence embeddings and no knowledge graph, and
models that use both sentence embeddings and embedding
representations for knowledge graph paths. Our model is an
instance of the last category.

TransE + KG paths: In this model, the KG paths are the
inputs. Each sentence in the KG model includes two types of
paths: paths between entities and paths from the entities to the
topic. We concatenate all sentences’ paths in a topic and split
the paths into triples (entity 1, relation, entity 2).

We use AmpliGraph, an open-source library for KG em-
beddings, to train all entities and relations within a topic by
TransE. For each KG path, we get unique evidence embed-
dings and concatenate whole embeddings as a feature vec-
tor. Inspired by their classification example4, the embedding
features are the inputs to gradient boosted decision trees as
implemented in Scikit-learn5. The max depth of the gradient
boosted decision trees is three and the learning rate is set to
0.1 as default parameters.

BERT-KG: The inputs to our BERT-KG model are the
sentences from the UKP Sentential Argument Mining Corpus
and the KG paths for each sentence. The idea is similar to the
baseline [6], where the authors concatenate the KG evidence
to the XLNet pre-train model. We combined the two kinds
of paths, paths between entities and paths between topics, in
three models:

• sentence + entities,
• sentence + topic,
• sentence + topic + entities.

For most ‘Non Argument’ sentences, there are no extracted
paths to the topic. The first step is KG path preprocessing: the
paths for each sentence remove the duplicated relations and
entities to reduce the length. With the help of the Huggingface
‘BERT-large-case’ pre-trained model, we get the sentence and
the KG paths representation and transfer the feature vector as
a new feature into the classifier. We utilize the pooler output

4AmpliGraph https://docs.ampligraph.org/en/1.1.0/tutorials/
ClusteringAndClassificationWithEmbeddings.html.

5https://scikit-learn.org/stable/modules/ensemble.html#
gradient-tree-boosting.

TABLE II
EXAMPLE ENTITIES AND RELATIONS EXTRACTED BY USING LDA

Entity 1 (predicted relation, Entity 2)

Energy (part of, universe),
(subclass of, physical quantity)

Mitochondrion
(has part, Mitochondrial DNA),

( part of, Cytoplasm),
(instance of, cellular component)

Natural selection
(subclass of, biological selection),

(discoverer or inventor, Charles Darwin),
(part of, evolutionary biology)

TABLE III
UNIQUE NUMBER OF ENTITIES AND RELATIONS IN EACH TOPIC AND THE

TRAIN/DEVELOPMENT/TEST SENTENCES

Entities Relations train val test
Abortion 9435 186 2736 392 776
Cloning 5556 165 2083 297 635
Marijuana legalization 5356 133 1762 209 488
School uniform 6203 189 2135 285 585
Gun control 7321 171 2391 320 659
Nuclear 6261 144 2469 354 742
Minimum wage 4846 163 1679 267 462
Death penalty 5562 160 2492 376 718

from BERT pre-training as input into a linear regression layer
with a softmax activation function in the experiments. Cross
entropy is used as a loss function. All of the weights and biases
are initialized randomly. The learning rate is set to 5e−6, with
early stopping if the accuracy on the development data did not
improve after three epochs. The systems were run ten times
with different seeds.

BERT-Sent: The inputs of the BERT-Sent model are the
sentences without topic information and without KG informa-
tion. The model of BERT-Sent is the same as BERT-KG, where
both used the same BERT-large-case’ pre-trained model, the
learning rate and early stopping.

K-BERT: We chose the K-BERT model6, introduced in
the related work section, as the state-of-the-art model in our
experiments. K-BERT brings a new perspective that is different
from KG embedding, as it represents the entities in continuous
vector spaces.

The authors create a lookup table with the key (entity 1),
and as values all tuples (relation, entity 2) which match
entity 1. In their original experiments, they used Chinese
language datasets pre-trained on WikiZh. However, for our
tasks, we instead use a pre-trained model on an English corpus:
Google ‘BERT-Base’ model7 with 12 hidden layers and a
hidden dimension size of 768.

C. Experiments

Tabel II lists examples of triples on cloning, where the
pieces of evidence are extracted using the LDA algorithm.
The number of unique entities and relations of each knowledge
graph is shown in Table III. The accuracy evaluation for all

6K-BERT: https://github.com/autoliuweijie/K-BERT.
7https://github.com/google-research/bert.



Fig. 5. A sample argument input (top) and its noisy concept paths between
entities: burger to food and burger to restaurant. ‘Paths between entities’ and
‘Paths to topics’ are the outputs from the knowledge graph part.

experiments is given in Table IV. We computed each topic’s
macro averaged F1 score as the fraction between per-class F1
scores and the total number of classes.

TransE + KG paths: The results of KG extraction confirm
that our retrieval methods can improve knowledge discovery
for a small dataset. However, the results in Table IV indicate
that knowledge graph evidence alone is not sufficient to
outperform other methods.

K-BERT: Comparing with other state-of-the-art methods
(e.g., K-BERT [23]), one drawback of our model is that
the size of the knowledge graph is small. There is a lack
of enough evidence to enrich the sentence. Also, the paths
between entities are noisy. An example is shown in Figure
5: Here, the paths between entities are noisy, which reduces
the accuracy of the argument classifier. For example, one path
connects the concepts burger and food or restaurants within
the sentence, even though they do not fit into the sentence-
specific context.

BERT-KG: The three BERT-KG models use the same
‘BERT-large-case’ pre-trained model and parameters. It may
come as no surprise that the BERT-based pre-trained models
achieve better results overall in our comparison. As Table
IV shows, BERT with sentences as input performs better
on average than the vanilla BERT with KG information and
the topic information. For the topics ‘minimum wage’ and
‘death penalty’, ‘Sent+entities+topics’ achieved the best F1
score among our own methods although the difference is not
statistically significant. One shortcoming of our approach is
that it cannot distinguish between positive and negative KG
paths, i.e. it cannot decide whether the path supports the topic
or not. An error example is shown in Table V. Overall the
performance of our BERT-KG is comparable to that of BERT
using only sentences as input. This indicates that the ability of
our method to utilize the knowledge graph information needs
to be improved.

V. CONCLUSION

We overcome exponential growth of the knowledge graph
needed for path extraction using two key ideas: topic modeling
to improve the selection of relevant properties and word
embedding to ensure topical consistency, which leads to a
sparser knowledge graph. Compared to existing methods, we
can process a considerably larger amount of data and consider
more possible properties. This allows us to discover more
relevant paths. This study confirms that KG enriches text
understanding, and it is an essential focus for further research.
In the future, we will continue improving our KG retrieval
methods in the low-resource domain. One possible application
is in neural topic models, which could be enriched with knowl-
edge graph information. Further attention to KG embedding
methods and the combination with sentence embeddings is
also needed.
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