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Abstract

Metaphor generation is a difficult task, and
has seen tremendous improvement with the
advent of deep pretrained models. We fo-
cus here on the specific task of metaphoric
paraphrase generation, in which we provide
a literal sentence and generate a metaphoric
sentence which paraphrases that input. We
compare naive, "free" generation models with
those that exploit forms of control over the gen-
eration process, adding additional information
based on conceptual metaphor theory. We eval-
uate two methods for generating paired train-
ing data, which is then used to train TS5 mod-
els for free and controlled generation. We use
crowdsourcing to evaluate the results, showing
that free models tend to generate more fluent
paraphrases, while controlled models are bet-
ter at generating novel metaphors. We then
analyze evaluation metrics, showing that dif-
ferent metrics are necessary to capture differ-
ent aspects of metaphoric paraphrasing. We re-
lease our data and models, as well as our anno-
tated results in order to facilitate development
of better evaluation metrics.!

1 Introduction

Metaphors are ubiquitous in human language, and
while humans seem capable of easily understand-
ing even complex metaphors, it remains difficult
to implement computational methods that capture
the depth and breadth of meaning inherent in novel
metaphors. While many approaches have been im-
plemented for metaphor detection, interpretation,
and generation, there remain many open questions
about how to incorporate linguistic and cognitive
theory into these methods, as well as how to evalu-
ate them quickly and effectively.

Our task is that of metaphoric paraphrase gen-
eration: given a literal input sentence, we aim to
generate a semantically similar sentence that is

'Code and data at https: //github.com/UKPLab/

metaphoric. Specifically, we focus on two possi-
ble methods for metaphoric paraphrase generation:
free and controlled.

In free generation, models are trained using lit-
eral and metaphoric pairs, but are not given in-
formation regarding which metaphoric meaning is
intended. This allows the model the freedom to
develop new metaphors that can be creative, novel,
and perhaps even inspiring. However, it can lead
to noisy generation, which is difficult to evaluate
as even randomly generated metaphors can some-
times be effective via coercion-like processes. Ad-
ditionally, if a generated text is to remain coherent,
metaphor generation must be consistent within it,
and free generation is thus ill-suited to generating
longer coherent metaphoric texts.

The other option, controlled generation, in-
volves adding additional constraints the genera-
tion objective to encourage the model to generate
a specific metaphor. This methodology is useful
when an intended metaphor is known, or needs to
be consistent across a dialogue: the model can be
suitably constrained to be consistent. Recent work
has explored controlled generation (Stowe et al.,
2021); we aim to address if and how adding control
improves over free generation.

As a theoretical basis for metaphors, we employ
Conceptual Metaphor Theory (CMT). In CMT, we
consider linguistic metaphors as arising from con-
ceptual metaphors that are a part of our cognitive
processes, in which a concrete source domain is
used to better understand a more abstract rarget
domain (Lakoff and Johnson, 1980; Lakoff, 1993).
We typically consider language from the abstract
target domain in the context sentence as literal,
and aim to generate expressions evoking a con-
crete source domain that can be used to describe
it metaphorically. In free generation, the system
is left open to choose which domain is appropri-
ate; in controlled generation, we provide the model
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Consider the following example of free genera-
tion. We train a seq2seq metaphor model to take
a literal sentence as the context and produce some
metaphoric hypothesis:

1. The company was losing money rapidly. —
The company was leaking money.

Contrast this with controlled generation, in
which we have an intended metaphor: we constrain
the model to produce an specific metaphor ie. view-
ing company as a human body, and the loss being
some kind injury:

1. (ECONOMIC HARM IS PHYSICAL INJURY)
The company was losing money rapidly. —
The company was hemorrhaging money.

We start by implementing the metaphor-naive
SOW-REAP paraphrase generation system of Goyal
and Durrett (2020), to compare it to those designed
specifically for metaphoric generation. We then
fine tune pretrained T5 seq2seq models using lit-
eral/metaphoric pairs, as they allow for easy imple-
mentation of control codes (Raffel et al., 2020). We
use both an available dataset of semi-supervised
literal/metaphoric pairs and a new dataset based
on a novel pair generation procedure. We evaluate
the effectiveness of free and controlled generation,
using crowdsourcing to label the outputs for flu-
ency, paraphrase quality, and metaphoricity. Using
our resulting crowdsourced dataset, we analyze
evaluation metrics: we assess whether traditional
evaluation metrics for generation are effective for
metaphoric language. We explore a suite of pos-
sible metrics, assessing their correlation to human
judgments across the three crowdsourced labels.

Our contribution is summarized as follows:

* We compare controlled and free metaphor gen-
eration, showing that adding control improves
the metaphoricity of outputs, while free gener-
ation tends to generate more fluent, coherent
paraphrases.

* We perform an analysis of automatic evalua-
tion metrics, comparing them to crowdsourced
annotations, showing conflict between fluency
and metaphoricity evaluation metrics, indicat-
ing that individuals metrics are poor evalua-
tors for metaphor generation.

* We release our novel training dataset of 360k
pairs based on MetaNet mappings, along with

our gold test set and 1,250 samples anno-
tated for fluency, sentence similarity, and
metaphoricity to allow for better evaluation of
metaphor generation systems.

2 Related Work

2.1 Paraphrase Generation

The task of paraphrase generation has a rich back-
ground, including rule-based approaches (McK-
eown, 1983) and mono-lingual machine transla-
tion methods (Quirk et al., 2004; Wubben et al.,
2010). Deep learning has driven the field in re-
cent years, particularly autoencoder and LSTM
networks (Gupta et al., 2018; Prakash et al., 2016)
and transformer-based methods (Li et al., 2019;
Egonmwan and Chali, 2019; Wang et al., 2019).

Our task, however, diverges in many regards
from the standard task of paraphrasing, which typ-
ically relies on syntactic and lexical transforma-
tions to generate sentences with exactly the same
meaning as the input. We instead aim to gen-
erate sentences that contain additional meaning
via a metaphoric mappings. In this regard, the
entailment relations and semantics of generated
metaphors will differ from traditional paraphrase
generation: we expect the generated metaphor to
entail the literal context, but as it adds something
additional, the literal context may not entail the
metaphoric output.?

Recent work in paraphrase generation has taken
a step in this direction by focusing on generating
diverse paraphrases (Xu et al., 2018; Qian et al.,
2019; Yang et al., 2019; Goyal and Durrett, 2020).
While not designed for metaphoricity, we include
the SOW-REAP system of Goyal and Durrett (2020)
as a comparison to highlight the disparity between
metaphoric and non-metaphoric paraphrasing capa-
bilities.

2.2 Metaphor Generation

Early work in computational metaphor generation
involves generating simple "A is like B" expres-
sions, based on probabilistic relationships between
words (Abe et al., 2006; Terai and Nakagawa,
2010). These methods are effective to a degree,
but lack the flexibility necessary to instantiate natu-
ral language metaphors.

“Consider the metaphor "Her husband abuses alcohol."
(Mohammad et al., 2016): it entails the literal paraphrase "Her
husband drinks alcohol", but the reverse is not necessarily
true.



Metaphor generation has recently seen signif-
icant advances due to deep pretrained language
models. Yu and Wan (2019) use neural models
to generate metaphoric expressions in an unsuper-
vised manner. They identify source and target verbs
automatically from corpora, and use these to train
a neural language model. However, they are gener-
ating metaphors without regard to reference texts
from metaphorically trained language models, and
the outputs bear no relation to the inputs.

With regard to paraphrasing, Stowe et al. (2020)
use a metaphor masking process to generate par-
allel training data in which key metaphoric words
are hidden, causing the resulting seq2seq model
to generate metaphoric words. Chakrabarty et al.
(2020) build a simile generation system based on
pretrained seq2seq models. Similarly, the MER-
MAID system uses a semi-supervised data collec-
tion method to generate metaphoric pairs, using
them to fine-tune a BART-based seq2seq model
(Chakrabarty et al., 2021). These models are re-
stricted to free generation: the models are not
constrained to generate in a particular domain or
metaphoric mapping. It may be the case with suffi-
cient large pretrained models, free systems learn to
generate valid conceptual metaphors.

For controlled generation, Stowe et al. (2021)
collect pairs based on FrameNet frame tags, which
are used to represent conceptual domains. These
are then used to build a controlled paraphrasing
system. We undertake the task of comparing these
two methodologies: do free generation systems
generate valid metaphors, and does adding con-
ceptual metaphor information improve metaphoric
paraphrase generation?

3 Data

A key bottleneck in metaphoric paraphrasing is
the lack of high quality literal/metaphoric pairs for
both training and evaluation. While two datasets
of hand-crafted metaphoric paraphrases are avail-
able (Mohammad et al., 2016; Bizzoni and Lappin,
2018), they both contain less than 200 instances,
and are thus too small for model training and/or
fine-tuning. We explore two possible datasets
for this purpose: a previously used dataset which
contains source and target domains via FrameNet
frames (Stowe et al., 2021), and a new semi-
supervised dataset which contains source/target
information based on the metaphor-based lexical
resource MetaNet.

3.1 Source/Target pairs from FrameNet
Tagging

As a starting point, we use the data from Stowe et al.
(2021). This dataset is a semi-supervised pairing
of literal and metaphoric sentences. It is generated
by taking sentences from the Gutenberg Poetry
corpus (Jacobs, 2018), tagging them automatically
with metaphor labels, then replacing metaphoric
words using a language model to produce a lit-
eral paraphrase. This follows the assumption that
the more likely replacement words from the lan-
guage model will tend to be literal. The literal
paraphrase and original metaphor are tagged us-
ing the COMET parser (Bosselut et al., 2019), and
pairs that contain overlapping common-sense sym-
bols are kept. They then use the open-SESAME
parser to add FrameNet frame labels, which func-
tion as domains. The pairs are considered to re-
flect metaphoric mappings between their respective
frame labels, which are then provided as control
codes to a BART model to generate metaphors from
specific mappings (Lewis et al., 2020).

This method is effective for generating con-
trolled metaphor pairs, but has a number of draw-
backs. First, it relies heavily on a number of models
(metaphor classification, FrameNet frame tagging,
and COMET symbol extraction), each of which
introduces error. Specifically, metaphor detection
remains a difficult task (with state-of-the-art results
< .77 F1 (Leong et al., 2020)), making the iden-
tification of initial metaphors difficult. FrameNet
tagging is also error prone, with the micro-F1 score
for frame tagging being 70.9. The data is all ex-
tracted from a single source, the Gutenberg Poetry
corpus, and thus inherits biases from the data: the
sentences are all relatively short, and often syntac-
tically strange due to the poetic style of the corpus.

Finally, the mappings learned are entirely reliant
on the FrameNet frame tags: the mappings them-
selves are still detached from any theory, and may
not reflect true metaphoric mappings.To obviate
these difficulties, we here propose an alternative
method for generating data which uses the MetaNet
resource, which instead contains gold metaphoric
mappings.

3.2 MetaNet Generation

MetaNet is a resource which contains a substan-
tial set of mappings between conceptual domains
(Dodge et al., 2015). These mappings consist of
source and target domains which evoke the concep-



——
NATIONS ARE
MACHINES

p
_— { NATIONS MACHINES }»
/'/ N 5 7
/
/ POLITICAL
[ oLl GIZMO
LOCATION
iz kmgdom ‘ I: He ruledthelargest He ruled the largest S: maamne gear,
country, land, kingdom that ever [MSK] that ever apparatus, core,
state, . existed emsted device, gadget,

C] MetaNet Domains
[ ] FrameNet Frames
[T Vocabulary
[ ] Mask Filling

P
5 He ruled the largest
Literal (Target) Context (T) machine that ever

[ ] Metaphoric Hypothesis existed. )

Figure 1: MetaNet pair generation process. By linking
MetaNet conceptual mappings to FrameNet frames, we
identify input sentences I from the target domain, mask
the target the target words T, and generate hypothe-
ses using a set of candidate words S from the mapped
source domain.

FitterBERT

tual metaphor, along with links from these domains
to FrameNet frames

For each mapping in MetaNet, we build a set of
input sentences I, a set of source vocabulary words
S, and a set of target vocabulary words 7". We start
with these conceptual mappings from MetaNet,
which are based in CMT. We extract the target
domain (which is typically found in the literal sen-
tence) and the source domain (which we typically
consider to be metaphoric) from each mapping.
Note that verbs are typically what we consider the
metaphoric element of these phrases, and they typ-
ically evoke source domains(Deignan, 2005; ste;
Sullivan, 2013).

From these mappings, we follow MetaNet’s
links from the target domains to their respective
FrameNet frames. We then expand the set of frames
by incorporating all additional frames that directly
link to the first. From this expanded set of frames,
we collect all example sentences. These are then
combined to yield our set of literal input sentences
1. We then build a metaphoric vocabulary S for the
mapped source domain. This is done by extracting
the lexical items provided by the MetaNet source
domain, as well as from the lexical items from
the FrameNet frame that is linked to the MetaNet
source domain. To build the target vocabulary T,
this process is repeated for words from the target
domain of the MetaNet mapping.

Finally, we take the input sentences from the
target domain (extracted from FrameNet examples),
and replace the words from the target domain set T’
with masks. We then fill the masks with the best fit
word from the source vocabulary using FitterBERT,
a filter layer built on top of BERT(Devlin et al.,

Stowe et al. (2021) | MictaNet
Silver
# Sentences 248k 360k
Unique Mappings 8.5k 650
Unique Domains 1k 550
Avg. Sent.
Length (words) 8.2 23.6
Gutenberg FrameNet
Source
Corpus corpus
Table 1: Summary of the two datasets used for

metaphor generation training.

2019). FitterBERT is inspired by FitBERT (Havens
and Stal, 2019), but is three orders of magnitude
faster.

Consider the example in Figure 1. On the left,
we use the abstract NATIONS frame from MetaNet,
map it to the respective POLITICAL LOCATION
frame in FrameNet, then extract literal example
sentences I and target vocabulary 7'. On the right,
we collect candidate vocabulary S from the source
domain in MetaNet and frame in FrameNet, and
replace the target word from the literal input with
appropriate source-domain vocabulary to yield a
matching metaphoric paraphrase.

Note that this procedure functions as a reverse
of the procedure from Section 3.1. They gener-
ate literal counterparts given the metaphor as the
starting point, following the assumption that the
language model will fill a more literal word into
the context. We start with the literal input, and
generate a metaphoric counterpart by constraining
the vocabulary via known mappings and resources.
This allows us to leverage the knowledge present in
MetaNet and FrameNet to build metaphoric pairs
motivated by conceptual metaphor theory. We refer
to this dataset as the MNS (MetaNet silver) corpus.

Both datasets thus consist of semi-supervised
paired sentences, annotated with the conceptual
domains they evoke (one from FrameNet, one from
MetaNet frames: these differ, but only slightly). A
summary of both datasets is shown in Table 1.

Note that the MNS corpus has two key of advan-
tages: first, the mappings are constrained to a set
of hand-crafted metaphors from MetaNet. Second,
the average sentence length is much longer, as the
FrameNet annotations used cover a much more di-
verse set of sentences than the Gutenberg poetry
corpus.



4 Methods

4.1 Seq2seq Models

For our free and controlled generation models, we
use the T5 system for sequence to sequence gen-
eration (Raffel et al., 2020). This allows to imple-
ment control codes for metaphoricity and intended
source/target mappings directly into the input texts.
For an overview of the model inputs, see Table 2.

This process of including additional meta-
information about the intended generation is sim-
ilar to the language/task embedding paradigm, in
which new languages and tasks can be handled
by language models through directly appending
relevant textual information(Ammar et al., 2016;
Duong et al., 2017).

4.2 SOW-REAP Paraphrase Generation

We evaluate the SOW-REAP paraphrase model built
to generate a diverse set of paraphrases for a given
input (Goyal and Durrett, 2020). This model is
naive with regard to metaphoricity: we anticipate
the generated outputs should be strong with regard
to fluency and semantic similarity, but not improve
over the literal inputs with regard to metaphoricity.

The SOW-REAP model works by building a set
of word re-orderings for the given input, then gen-
erating a set of diverse paraphrases for each re-
ordering. To employ it in direct comparison, we
select the single paraphrase over all re-orderings
for a given input that had the highest intrinsic score,
defined as the log probability of the output under a
transformer-based model.

4.3 Free Generation

Free generation follows the use case of a user gen-
erating a metaphor from a given input, but without
any knowledge of what would be an interesting,
valid, or useful output. Free metaphor generation
can be used to identify heretofore unknown con-
nections between domains or fuel creative writing.
For free generation, we modify the context by
adding a control code, "Activate metaphors". As
we are fine-tuning a large pretrained T5 model,
it may be the case that models can automatically
generate metaphors from valid conceptual map-
pings as it has seen these metaphors before. How-
ever, without control, the model may also generate
from incompatible domains, or otherwise incoher-
ent metaphors, as metaphors tend to require some
congruity between the concepts involved.

4.4 Controlled Generation

Controlled generation is intended to build para-
phrases with explicit encoding of the semantics of
intended metaphor. For our purposes, this is done
by incorporating mappings based in CMT; incor-
poration of any type of metaphoric representations
is theoretically possible. Controlled generation fol-
lows the use case where a user knows the relation
they intend to capture, and needs the model to be
consistent. This is necessary for longer text/story
generation to have consistent metaphors, and in
general to generate expressions for which finer-
grained control of the semantics is required.

To incorporate controlled generation into TS,
we include target and source information into the
prefix, which then matches the format "Activate
metaphors from TARGET to SOURCE:". Note that
the relevant focus words are not marked: the model
is free to evoke the metaphor flexibly, although
as the training pairs vary only in the focus verb,
in practice this is where changes are typically
observed. As the model is always asked to ac-
tivate metaphors, it learns a generalization over
metaphoric expressions, but also additional sig-
nal regarding the input and output domains. Con-
trolled generation constrains the model to specific
domains, which increases the sparsity of training
data for particular domains. However, using a large
pre-trained language model as the base allows us
to fine-tune on sparse data and still generate valid
metaphoric expressions.

5 Human Evaluation

We develop both free and controlled models for the
two datasets outlined in Section 3. We evaluate
them on a hand-crafted test set which includes sam-
ples both within the data set they were trained on
and from the unseen dataset.

5.1 Test Data

To evaluate model performance, we create a test set
comprised of 250 literal/metaphoric pairs. We start
with the 150 pairs from Stowe et al. (2021), which
are taken from the Mohammad et al. (2016) corpus
and the Gutenberg poetry corpus (Jacobs, 2018).
In addition, we add 100 paired sentences from
the data collected in Section 3.2, which are first
removed from the training dataThese are hand an-
notated for quality, ensuring that they contain valid
metaphoric/literal pairs and source/target domain
mappings. 50 were selected from the "narrow"



Context

Betty ushered the guests into the cottage.

Reference

Betty steered the guests into the cottage.

Domains

ushered:LEADERSHIP, steered:VEHICULAR_MOTION

Free Generation Context

Activate metaphors: Betty ushered the guests into the cottage.

Controlled Generation Context

Activate metaphors from LEADERSHIP IS VEHICULAR_MOTION:

Betty ushered the guests into the cottage.

Table 2: Data inputs for T5 seq2seq metaphoric paraphrase generation.

Free Ctrl
Metric SOW-REAP | MNS [ Stowe | All MNS [ Stowe [ Al Gold
% not paraphrased 24 39.6 22.0 18.4 384 13.2 6.4 -
Fluency 3.176 34611 | 3.474 | 3.5111 || 3.320 | 3.418 3.355 3.396
Sentence Similarity 3.246 3.648% | 3.6761 | 3.680% || 3.458 | 3.573 3.460 3474
Metaphoricity 2.278 2.348 2.490 2.424 2.430 | 2.6661 | 2.593t1 || 2.690

Table 3: Human evaluation scores (1-4) for each generation method. § (.05 > p > .01), I (p < .01) over opposing

model (Free/Ctrl)

metaphors and 50 were selected from the "broad"
metaphors as annotated by MetaNet.

We use crowdsourcing to annotate each gener-
ated sentence for all models as well as the gold
outputs. We first identify samples in which the
output exactly matches the input; these samples
are then excluded from further analysis. Following
previous work in metaphor evaluation, we rate the
generated outputs on three characteristics: (1) flu-
ency, to evaluate the general grammatical quality
of the output, (2) semantic similarity, to assess
whether the output is a valid paraphrase, and (3)
metaphoricity. For a full description of our crowd-
sourcing process, see Appendix A.

5.2 Analysis

Mean scores of all annotations for each model are
shown in Table 3.> We included our gold stan-
dard test data in the human evaluation, as these
metaphors are often difficult to understand, not per-
fect paraphrases, or contain other quirks of creative
language. We find that the gold paraphrases have
good fluency and semantic similarity scores, but
aren’t viewed as tremendously metaphoric. This is
likely due to the relatively conventional nature of
many of the gold metaphors: they are metaphoric
in our linguistic analysis, as the metaphor evokes a
connection between source and target domains, but
they are frequent and normal in every day language,
so crowdworkers were less likely to consider them
good, novel metaphors.

For each model, we assess whether it produces

3Note that the evaluations are done after removing non-
paraphrased instances, in which the hypothesis matched the
context exactly. We evaluate other possible options in Ap-
pendix B.

significant improvements over the opposing ver-
sion. Specifically, we are interested in whether the
free models improve over the controlled and vice-
versa. We evaluate using a paired t-test, setting our
significance value at p < .05, while also noting
where significance values were stronger (p < .01).

The SOW-REAP neural paraphrasing model per-
forms relatively poorly. Somewhat surprisingly, it
scores lowest on both fluency and semantic sim-
ilarity, for which it should be strong. Its weak
metaphoricity scores are to be expected: the model
is designed to generate diverse paraphrases, but
there is no reason for them to be metaphoric.

The models based on MetaNet data have better
fluency and sentence similarity scores than SOW-
REAP. However, metaphoricity is still low. The
models trained on the Stowe et al. (2021) data
have a stronger metaphoric signal. Combining both
datasets yields small improvements in some cases,
but the individual models outperform the combined
in others. The key advantage of combining models
is the coverage: combining models drastically re-
duces the percentage of non-paraphrased sentences.

Adding control to the metaphor generation mod-
els greatly improves performance with regard to
metaphoricity, improving metaphoricity scores in
all experiments, with significant gains of .176 and
.171 for the Stowe and All training set models.
However, the free models perform moderately bet-
ter with regard to semantic similarity and fluency.
Two of three fluency scores and all sentence simi-
larity scores from Free models significantly outper-
formed the controlled versions. During training for
free models, the models aren’t constrained to learn
from specific mapping-based vocabulary, and thus
have greater freedom in generation, which can then



be used to better match the original input. They
generate words and phrases that better fit the con-
text at the expense of metaphoricity. In some cases,
they may even choose less metaphoric words which
seem more natural, yielding better fluency and sen-
tence similarity scores, but lowering metaphoricity.
Controlled systems, on the other hand, are capable
of using our understanding of conceptual metaphor
theory to produce stronger metaphoric expressions.
Their scores for fluency and sentence similarity are
lower than the free models, but are still on par with
the original gold references.

6 Automatic Evaluation

Evaluation of metaphor generation is a difficult
task, as traditional metrics for machine translation
and other tasks aim to enforce lexical and semantic
similarity between the input and output sequences.
As these metrics often rely on word overlap, valid
metaphoric paraphrases may be punished for be-
ing overly creative. We thus implement a variety
of standard evaluation metrics and evaluate their
correlation with our gold standard annotations.

BLEU, METEOR, ROUGE Word and phrase
overlap metrics from machine translation such as
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGE (Lin, 2004)
are often used to evaluate paraphrasing, despite
noted weaknesses (Reiter and Belz, 2009; Reiter,
2018). We include them here to highlight their
performance on creative language, and to compare
them against human evaluations.

Translation Error Rate TER is another com-
monly used metric in machine translation, measur-
ing the amount of correction that is necessary for a
generated output to be valid (Snover et al., 2006).

SentBERT SentBERT (Reimers and Gurevych,
2019) provides sentence transformers to generate
sentential vectors. These can be then compared
using cosine distance to find semantic similarity.
SentBERT has proven effective for a wide variety
of similarity tasks, and should also be effective at
determining paraphrase quality between literal and
metaphoric sentences.

MoverScore MoverScore (Zhao et al., 2019) is a
metric that uses BERT and Earth Mover Distance to
measure similarity between two sentences. It uses
contextual embeddings similar to SentBERT, and
has the potential to better represent sense-specific
meanings like those associated with metaphoricity.

Perplexity Transformer-based language mod-

els such as the GPT family (Radford et al., 2019;
Brown et al., 2020) are extremely effective at pro-
ducing text. The perplexity of a given sentence
under the language model can be a proxy for sen-
tence fluency. This approach promotes common
words over rare, perhaps penalizing creativity, but
can used as an evaluation metrics for generation
systems (Chen et al., 2020; Bao et al., 2019).

Abstractness The notions of abstractness and
concreteness have long been staples in metaphor de-
tection systems (Dunn, 2013; Turney et al., 2011).
We here use the abstract/concreteness ratings from
Koper and Schulte im Walde (2017), which are
based on Word2Vec embeddings (Mikolov et al.,
2013). We evaluate the mean abstractness score, as
well as the standard deviation, under the assump-
tion that one of the main aspects of metaphoricity
is the difference between abstractness levels of dif-
ferent conceptual domains within a sentence.

Novelty Classification We train a BERT regres-
sion model on the metaphoric novelty scores from
Do Dinh et al. (2018). We score the generated
sentence as the mean metaphoricity score over all
words in the generated sentence.

Binary Metaphor Classification For binary
metaphor classification, we use the DeepMet sys-
tem of Su et al. (2020), which achieved best perfor-
mance on the metaphor shared task (Leong et al.,
2018). This model uses linguistics and contextual
features in a siamese architecture, taking advantage
of local and distant context. DeepMet functions at
the word level; we score the generated sentence by
taking the average number of words in the sentence
classified as metaphoric.

We consider the generated output the hypothe-
sis, the gold target metaphor as the reference, and
the original literal input as the context. We com-
pare each of these metrics to the crowdsourced an-
notations for all of our system outputs (n = 1458
unique hypotheses). For the similarity metrics, we
evaluate using the hypothesis against the reference
as well as against the context. For the others, they
can intrinsically evaluate the hypothesis alone.

Pearson correlations are shown in Figure 2. Note
that each metric has a specific goal, and thus we
don’t expect them to all perform well over all met-
rics. The word overlap metrics as well as Sent-
BERT and MoverScore are designed to capture
sentence similarity, perplexity is designed to cap-
ture sentence fluency, and the metaphoric models
are designed to capture metaphoricity.
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Figure 2: Pearson correlations between automatic evaluation metrics and crowdsourced labels.

No metric adequately captures all three aspects,
although individual metrics excel at the compo-
nents they are designed for. Peak correlations for
fluency and metaphoricity are below .4, indicating
these tasks are difficult to evaluate automatically in
a way that is consistent with human evaluation. We
further explore each component and the relevant
metrics’ performance:

6.1 Fluency

Perplexity under GPT-2 performs best for fluency,
far outperforming any other metric, which is ex-
pected as this was the intended use of this metric.
Semantic similarity metrics correlate with fluency,
as a fluent output sentence is more likely to be
similar to the original contexts and the reference
sentences, both of which are fluent.

Note that while perplexity yields the best re-
sults for fluency, it correlates negatively with
metaphoricity. This means that accurate evaluation
of fluency will punish good metaphoric sentences.
Perplexity thus cannot be used exclusively to eval-
uate generated metaphors, but rather requires cor-
responding metrics to evaluate the metaphoricity
of the output.

6.2 Sentence Similarity

Both standard word overlap metrics and contex-
tual embedding-based metrics correlate strongly
with sentence similarity. We see much stronger
correlations when comparing the generated hypoth-
esis with the original input context. Our goal is to
identify a sentence that semantically matches the
context rather than the reference. Many possible
metaphoric outputs could be suitable: comparing
the hypothesis to a singular reference is less valu-

able, as it only reflects one possible option. Hy-
potheses can vary substantially from the reference
and still be valid paraphrases of the context.

MoverScore and SentBERT compared to the con-
text yield the best correlation. Specifically, Sent-
BERT cosine similarity achieves a strong correla-
tion value of .65, making it a valuable metric for
evaluating this component. While these metrics
all correlate to some degree with fluency, as flu-
ent outputs are likely more similar to the original
fluent context and references, they show no strong
correlation with metaphoricity.

6.3 Metaphoricity

The mean abstractness of the generated outputs
does not correlate significantly with metaphoricity.
However, the standard deviation of the abstractness
values performs better, supporting the idea that
metaphoricity hinges upon variations in concrete
and abstract terms. The binary classification model
based on DeepMet has the strongest correlation
with human metaphoricity scores. This is some-
what unexpected: the binary classification model
averaged over the sentence correlates better than a
regression model trained on metaphor novelty.

In summary, these metrics all capture different
aspects of metaphoric paraphrase generation. Us-
ing one alone is insufficient, and can be misleading,
particularly with regard to fluency and metaphoric-
ity. We require a combination of perplexity under
a language model, state-of-the-art metaphor classi-
fication, and embedding based semantic similarity
metrics to capture the critical aspects of metaphoric
paraphrase generation.*

*Generated outputs along with their human evaluation
scores to are provided with the repository.



7 Conclusions and Future Work

We show that adding control to the metaphor gener-
ation process by means of conceptual domains im-
proves the metaphoricity of generated paraphrases,
but can decrease fluency and semantic similarity.
Free generation systems are entirely viable, and
may present advantages depending on the required
task.

Second, we explore automatic evaluation met-
rics, showing that while previously employed met-
rics are capable of capturing some aspects of gen-
eration, there may be conflict between components,
making multiple metrics necessary in order to best
reflect the overall quality of generated outputs.

These results provide multiple ways forward for
metaphor generation. With regard to free gener-
ation, we see that models are strong with regard
to fluency and sentence similarity: future work
thus requires a stronger signal for metaphoricity.
This could be achieved by using improved datasets,
or metaphor-specific generation models. For con-
trolled generation, we explore only using domains
from lexical resources as proxies for conceptual
domains in CMT. Other theories of metaphor (in-
cluding conceptual blends (Fauconnier and Turner,
1996), class-inclusion theory (Glucksberg, 2001),
and structure-mapping (Gentner, 1983)) have yet
to be explored for metaphor generation. With re-
gard to evaluation, we’ve shown the strengths and
weaknesses of some metrics, but none perform ex-
ceptionally well at this task overall. New metrics
are needed; a metric that can harmonize syntactic
fluency and the diversity of metaphoric expressions
is necessary for rapid model development and eval-
uation.
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A Crowdsourcing

For crowdsourcing, we employed Amazon Mechan-
ical Turk. We defined our three tasks with brief
definitions, and ran a set of 10 instances for which
we had gold scores for up to 100 crowdworkers to
complete. We initially filtered the workers by those
with at least a 90% approval rate, whose origin was
an English speaking country’. We then evaluated
those workers for competence. We selected only
workers that completed at least 8 instances, with
an average error of < 1 per instance from the gold
score. We also excluded all users were had answers
with an error greater than one, to exclude those who
had poor understanding of the task. This yielded a
set of users which we then white-listed to complete
the final evaluation. This ensures high quality an-
notations with the need for including test instances
in the final set.

The definitions for each metric are provided are
below:

* Fluency: Select how grammatical/fluent the
sentence is from 1 (completely incompre-
hensible) to 4 (fluent, grammatical English).
Don’t worry about capitalization or punctu-
ation. Just try to determine if you heard the
sentence, how grammatical would you con-
sider it? Some word choices may be strange,
but try to focus on the syntax. If the sentence
is grammatically valid, mark 4. If it has some
minor errors, mark 3. If it has multiple errors,
or is very hard to understand, mark 2. If it is
completely unintelligible, mark 1.

* Sentence Similarity: Select how similar the
meanings of the two sentences are from
1 (completely unrelated) to 4 (good para-
phrase).  Ignore punctuation/extra spac-
ing/capitalization. We care only about the
meaning/semantics. Do the sentences have
the same meaning? If so, select 4. Some
sentences may be paired with abstract or
metaphoric paraphrases: as long as they have
the same meaning, mark as 4. If the sen-
tences are similar but mean something dif-
ferent, mark 3. If the sentences are not very
similar but have some similar ideas, mark as
2. If the sentences are completely unrelated,
or incomprehensible, mark as 1.

SUS, CA, GB, NZ, AU, IE
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Metric | «

Fluency 423
Sentence Similarity | .364
Metaphoricity .338

Table 4: Interannotator Agreement (Krippendorff’s o)
for each metric.

» Metaphoricity: Select how metaphoric each
sentence, from 1 being the most literal/least
metaphoric to 4 being the strongest, most
novel metaphors. Metaphors involve using
language from one domain to describe an-
other. Good metaphors using novel language
to connect two concepts, often in creative
and interesting ways. Literal sentences de-
scribe the world as it is, and are typically
more basic and concrete. You can ignore
grammar/punctuation: try to just assess the
meaning of the sentence.

We paid workers .08% USD per task, aiming for
approximately 10$ per hour. Each task was com-
pleted by five annotators. Inter-annotator agree-
ments rates are shown in Table 4. Despite re-
flecting relatively low agreement, these are compa-
rable with previous agreement scores for crowd-
sourced metaphoricity evaluation, which lie be-
tween .16-.49 o for crowdsourcing, and approx-
imately .5 for expert annotation (Do Dinh et al.,
2018; Chakrabarty et al., 2021; Stowe et al., 2021).
These difficulties are likely due to the unique syn-
tactic and semantic nature of metaphoricity; more
work on better human evaluation is necessary.

B Evaluating Matching Hypothesis

We initially removed all outputs in which the hy-
pothesis exactly matched the context, as these indi-
cate a failure to generate a paraphrase. We exper-
iment with two alternative approaches. First, we
remove all sentences from evaluation for which any
model matches the input, thus allowing for equal
comparison across all models for a smaller dataset
(Table 5). Second, we automatically score all sen-
tences that exactly matched the context with their
theoretically expected scores: maximal fluency and
sentence similarity, with minimal metaphoricity
(Table 6).

These results match our expectations, and con-
firm the patterns reported in Section 5.2. The con-
trolled models generate better metaphors, while the
free models perform better with regard to fluency
and sentence similarity. Giving default scores to

hypotheses that match the context yields strong flu-
ency and sentence similarity scores scores, while
metaphoricity suffers for models that can’t generate
novel paraphrases. When the model has strong cov-
erage (ie. the fully controlled model), metaphoric-
ity scores remain strong.



Free Ctrl
Metric SOW-REAP | MNS | Stowe All MNS | Stowe All Gold
% not paraphrased 1.0 33.2 30.6 31.9 22.5 17.1 19.8 -
Fluency 2.998 3432 | 3440 | 3.507 || 3.359 | 3.394 | 3.313 3.243
Semantic Similarity 3.206 3.747 | 2.732 | 2.729 || 3.559 | 3.682 | 3.549 || 3.449
Metaphoricity 2.366 2.387 | 2.427 | 2.374 || 2.508 | 2.485 | 2.543 || 2.269

Table 5: Human evaluation scores (1-4) for each generation method, using only samples for which all models
generated a hypothesis that differed from the context (n = 109).

Free Ctrl
Metric SOW-REAP | MNS | Stowe All MNS | Stowe All Gold
% not paraphrased 1.0 33.2 30.6 31.9 22.5 17.1 19.8 -
Fluency 3.196 3.682 | 3.591 | 3.648 || 3.583 | 3.496 | 3.418 || 3.396
Sentence Similarity 3.264 3.792 | 3.748 | 3.770 || 3.668 | 3.630 | 3.513 || 3.474
Metaphoricity 2.247 1.794 | 2.158 | 2.024 || 1.877 | 2.444 | 2.439 || 2.690

Table 6: Human evaluation scores (1-4) for each generation method, giving default scores to hypotheses that
matched the context.



